Displaying all 8 publications

Abstract:
Sort:
  1. Zainol Abidin NZ, Sulong A, Alfizah H, Muttaqillah NA, Ding CH
    Malays J Pathol, 2015 Dec;37(3):227-32.
    PMID: 26712667 MyJurnal
    New Delhi metallo-β-lactamase-1 (NDM-1) is a relatively recent carbapenemase enzyme that inactivates all β-lactam antibiotics with the exception of aztreonam. This study aims to ascertain the baseline prevalence and antibiotic susceptibility patterns of NDM-1-producing Enterobacteriaceae in a tertiary medical center in Malaysia.
    Matched MeSH terms: Enterobacteriaceae/enzymology*
  2. Ibrahim N, Wajidi MF, Yusof MY, Tay ST
    Trop Biomed, 2011 Dec;28(3):668-71.
    PMID: 22433898 MyJurnal
    The increased frequency of antibiotic resistance is known to be associated with the dissemination of integrons in the Enterobacteriaceae. This study determined the prevalence and type of integrons amongst 160 extended-spectrum beta-lactamase producing enterobacterial isolates kept in our culture collection. Integrons were detected in 98(61.3%) isolates, including 28(62.2%) Escherichia coli, 34(64.2%) Klebsiella spp., 27(61.4%), Enterobacter spp. and 9(50.0%) Citrobacter spp. investigated in this study. Restriction analysis of the integron gene fragments revealed that class I integron was the principal integron detected in 92(57.5%) of our isolates. Class II integron was detected in 6(3.8%) of our isolates, while no class III integron was detected in this study. The high rates of integron prevalence particularly of the class I integron in the E. coli and Klebsiella spp. concur with previous studies in other geographical regions. The higher (≥50%) integron prevalence of Citrobacter and Enterobacter isolates comparing to previous studies suggests the potential of these isolates as sources for dissemination of resistance determinants. The finding in this study serves as a basis for further study on the antibiotic resistance mechanisms of enterobacterial species in this teaching hospital.
    Matched MeSH terms: Enterobacteriaceae/enzymology*
  3. Mohd Sazlly Lim S, Wong PL, Sulaiman H, Atiya N, Hisham Shunmugam R, Liew SM
    J Hosp Infect, 2019 May;102(1):8-16.
    PMID: 30653999 DOI: 10.1016/j.jhin.2019.01.012
    BACKGROUND: β-Lactamase resistance among certain Gram-negative bacteria has been associated with increased mortality, length of hospitalization, and hospital costs.

    AIM: To identify and critically appraise existing clinical prediction models of extended-spectrum β-lactamase-producing Enterobacteriaceae (ESBL-EKP) infection or colonization.

    METHODS: Electronic databases, reference lists, and citations were searched from inception to April 2018. Papers were included in any language describing the development or validation, or both, of models and scores to predict the risk of ESBL-EKP infection or colonization.

    FINDINGS: In all, 1795 references were screened, of which four articles were included in the review. The included studies were carried out in different geographical locations with differing study designs, and inclusion and exclusion criteria. Most if not all studies lacked external validation and blinding of reviewers during the evaluation of the predictor variables and outcome. All studies excluded missing data and most studies did not report the number of patients excluded due to missing data. Fifteen predictors of infection or colonization with ESBL-EKP were identified. Commonly included predictors were previous antibiotic use, previous hospitalization, transfer from another healthcare facility, and previous procedures (urinary catheterization and invasive procedures).

    CONCLUSION: Due to limitations and variations in the study design, clinicians would have to take these differences into consideration when deciding on how to use these models in clinical practice. Due to lack of external validation, the generalizability of these models remains a question. Therefore, further external validation in local settings is needed to confirm the usefulness of these models in supporting decision-making.

    Matched MeSH terms: Enterobacteriaceae/enzymology*
  4. Veldman K, Kant A, Dierikx C, van Essen-Zandbergen A, Wit B, Mevius D
    Int J Food Microbiol, 2014 May 2;177:72-7.
    PMID: 24607424 DOI: 10.1016/j.ijfoodmicro.2014.02.014
    Since multidrug resistant bacteria are frequently reported from Southeast Asia, our study focused on the occurrence of ESBL-producing Enterobacteriaceae in fresh imported herbs from Thailand, Vietnam and Malaysia. Samples were collected from fresh culinary herbs imported from Southeast Asia in which ESBL-suspected isolates were obtained by selective culturing. Analysis included identification by MALDI-TOF mass spectrometry, susceptibility testing, XbaI-PFGE, microarray, PCR and sequencing of specific ESBL genes, PCR based replicon typing (PBRT) of plasmids and Southern blot hybridization. In addition, the quinolone resistance genotype was characterized by screening for plasmid mediated quinolone resistance (PMQR) genes and mutations in the quinolone resistance determining region (QRDR) of gyrA and parC. The study encompassed fifty samples of ten batches of culinary herbs (5 samples per batch) comprising nine different herb variants. The herbs originated from Thailand (Water morning glory, Acacia and Betel leaf), Vietnam (Parsley, Asian pennywort, Houttuynia leaf and Mint) and Malaysia (Holy basil and Parsley). By selective culturing 21 cefotaxime resistant Enterobacteriaceae were retrieved. Array analysis revealed 18 isolates with ESBL genes and one isolate with solely non-ESBL beta-lactamase genes. Mutations in the ampC promoter region were determined in two isolates with PCR and sequencing. The isolates were identified as Klebsiella pneumoniae (n=9), Escherichia coli (n=6), Enterobacter cloacae complex (n=5) and Enterobacter spp. (n=1). All isolates tested were multidrug resistant. Variants of CTX-M enzymes were predominantly found followed by SHV enzymes. PMQR genes (including aac(6')-1b-cr, qnrB and qnrS) were also frequently detected. In almost all cases ESBL and quinolone resistance genes were located on the same plasmid. Imported fresh culinary herbs from Southeast Asia are a potential source for contamination of food with multidrug resistant bacteria. Because these herbs are consumed without appropriate heating, transfer to human bacteria cannot be excluded.
    Matched MeSH terms: Enterobacteriaceae/enzymology
  5. Subramanya SH, Bairy I, Metok Y, Baral BP, Gautam D, Nayak N
    Sci Rep, 2021 01 22;11(1):2091.
    PMID: 33483551 DOI: 10.1038/s41598-021-81315-3
    The increasing trend of gut colonization by extended-spectrum β-lactamase (ESBL) producing Enterobacterales has been observed in conventional farm animals and their owners. Still, such colonization among domesticated organically fed livestock has not been well studied. This study aimed to determine the gut colonization rate of ESBL-producing Enterobacteriaceae and carbapenemase-producing Enterobacteriaceae (CPE) among rural subsistence farming communities of the Kaski district in Nepal. Rectal swabs collected by systematic random sampling from 128 households of subsistence farming communities were screened for ESBL-producing Enterobacteriaceae and CPE by phenotypic and molecular methods. A total of 357 (57%) ESBL-producing Enterobacteriaceae isolates were obtained from 626 specimens, which included 97 ESBL-producing Enterobacteriaceae (75.8%) from 128 adult humans, 101 (79.5%) from 127 of their children, 51 (47.7%) from 107 cattle, 26 (51%) from 51 goats, 30 (34.9%) from 86 poultry and 52 (42%) from 127 environmental samples. No CPE was isolated from any of the samples. blaCTX-M-15 was the most predominant gene found in animal (86.8%) and human (80.5%) isolates. Out of 308 Escherichia coli isolates, 16 human and two poultry isolates were positive for ST131 and were of clade C. Among non-cephalosporin antibiotics, the resistance rates were observed slightly higher in tetracycline and ciprofloxacin among all study subjects. This is the first one-health study in Nepal, demonstrating the high rate of CTX-M-15 type ESBL-producing Enterobacteriaceae among gut flora of subsistence-based farming communities. Gut colonization by E. coli ST131 clade C among healthy farmers and poultry birds is a consequential public health concern.
    Matched MeSH terms: Enterobacteriaceae/enzymology
  6. Ikryannikova LN, Shitikov EA, Zhivankova DG, Il'ina EN, Edelstein MV, Govorun VM
    J Microbiol Methods, 2008 Dec;75(3):385-91.
    PMID: 18694787 DOI: 10.1016/j.mimet.2008.07.005
    A minisequencing method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was developed for rapid identification of single nucleotide polymorphisms at bla(TEM) gene codons 104, 164 and 238 associated with extended-spectrum activity on TEM-type beta-lactamases. The method was validated by testing the Escherichia coli and Klebsiella pneumoniae strains possessing the known bla(TEM) gene sequences.
    Matched MeSH terms: Enterobacteriaceae/enzymology
  7. Nurul Atifah MA, Loo HK, Subramaniam G, Wong EH, Selvi P, Ho SE, et al.
    Malays J Pathol, 2005 Dec;27(2):75-81.
    PMID: 17191389
    Antimicrobial resistance to the extended-spectrum cephalosporins is increasingly reported worldwide. In the local setting, nosocomial infections with multi-resistant Gram-negative bacilli are not uncommon and are a growing concern. However, there is limited data on the carriage rates of such organisms in the local setting. In May 2001, a prospective study was carried out to determine the enteric carriage rates of ceftazidime-resistant Gram negative bacilli (CAZ-R GNB) among residents of nursing homes and from in-patients of the geriatric and adult haematology wards of University Malaya Medical Centre. Ceftazidime-resistant Gram-negative bacilli (CAZ-R GNB) were detected in 25 samples (30%), out of which 6 were from nursing home residents, 5 from geriatric in-patients and 14 from the haematology unit. A total of 28 CAZ-R GNB were isolated and Escherichia coli (10) and Klebsiella pneumoniae (7) were the predominant organisms. Resistance to ceftazidime in E. coli and Klebsiella was mediated by extended-spectrum beta-lactamases (ESBLs). Although the majority of the CAZ-R GNB were from patients in the haematology ward, the six nursing home residents with CAZ-R GNB were enteric carriers of ESBL-producing coliforms. Prior exposure to antibiotics was associated with carriage of ESBL organisms and to a lesser extent, the presence of urinary catheters.
    Matched MeSH terms: Enterobacteriaceae/enzymology
  8. Hosuru Subramanya S, Bairy I, Nayak N, Amberpet R, Padukone S, Metok Y, et al.
    PLoS One, 2020;15(5):e0227725.
    PMID: 32469888 DOI: 10.1371/journal.pone.0227725
    The surge in the prevalence of drug-resistant bacteria in poultry is a global concern as it may pose an extended threat to humans and animal health. The present study aimed to investigate the colonization proportion of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing Enterobacteriaceae (EPE and CPE, respectively) in the gut of healthy poultry, Gallus gallus domesticus in Kaski district of Western Nepal. Total, 113 pooled rectal swab specimens from 66 private household farms and 47 commercial poultry farms were collected by systematic random sampling from the Kaski district in western Nepal. Out of 113 pooled samples, 19 (28.8%) samples from 66 backyard farms, and 15 (31.9%) from 47 commercial broiler farms were positive for EPE. Of the 38 EPE strains isolated from 34 ESBL positive rectal swabs, 31(81.6%) were identified as Escherichia coli, five as Klebsiella pneumoniae (13.2%), and one each isolate of Enterobacter species and Citrobacter species (2.6%). Based on genotyping, 35/38 examined EPE strains (92.1%) were phylogroup-1 positive, and all these 35 strains (100%) had the CTX-M-15 gene and strains from phylogroup-2, and 9 were of CTX-M-2 and CTX-M-14, respectively. Among 38 ESBL positive isolates, 9 (23.7%) were Ambler class C (Amp C) co-producers, predominant were of DHA, followed by CIT genes. Two (6.5%) E. coli strains of ST131 belonged to clade C, rest 29/31 (93.5%) were non-ST131 E. coli. None of the isolates produced carbapenemase. Twenty isolates (52.6%) were in-vitro biofilm producers. Univariate analysis showed that the odd of ESBL carriage among commercial broilers were 1.160 times (95% CI 0.515, 2.613) higher than organically fed backyard flocks. This is the first study in Nepal, demonstrating the EPE colonization proportion, genotypes, and prevalence of high-risk clone E. coli ST131 among gut flora of healthy poultry. Our data indicated that CTX-M-15 was the most prevalent ESBL enzyme, mainly associated with E. coli belonging to non-ST131clones and the absence of carbapenemases.
    Matched MeSH terms: Enterobacteriaceae/enzymology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links