Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Salleh FM, Moktar N, Yasin AM, Al-Mekhlafi HM, Anuar TS
    J Microbiol Methods, 2014 Nov;106:143-145.
    PMID: 25193442 DOI: 10.1016/j.mimet.2014.08.019
    To improve the stool concentration procedure, we modified different steps of the standard formalin-ether concentration technique and evaluated these modifications by examining stool samples collected in the field. Seven samples were found positive by the modified formalin-ether concentration technique (M-FECT). Therefore, the M-FECT procedure provides enhanced detection of Cryptosporidium oocysts.
  2. Wong YP, Chua KH, Thong KL
    J Microbiol Methods, 2014 Dec;107:133-7.
    PMID: 25307691
    Nosocomial infections are a major public health concern worldwide. Early and accurate identification of nosocomial pathogens which are often multidrug resistant is crucial for prompt treatment. Hence, an alternative real-time polymerase chain reaction coupled with high resolution melting-curve analysis (HRMA) was developed for identification of five nosocomial bacteria. This assay targets species-specific regions of each nosocomial bacteria and produced five distinct melt curves with each representing a particular bacterial species. The melting curves were characterized by peaks of 78.8 ± 0.2 °C for Acinetobacter baumannii, 82.7 ± 0.2 °C for Escherichia coli, 86.3 ± 0.3 °C for Klebsiella pneumoniae, 88.8 ± 0.2 °C for Pseudomonas aeruginosa and 74.6 ± 02 °C for methicillin-resistant Staphylococcus aureus. The assay was able to specifically detect the five bacterial species with an overall detection limit of 2 × 10(-2) ng/μL. In conclusion, the HRM assay developed is a simple and rapid method for identification of the selected nosocomial pathogens.
  3. Muniroh MS, Sariah M, Zainal Abidin MA, Lima N, Paterson RR
    J Microbiol Methods, 2014 May;100:143-7.
    PMID: 24681306 DOI: 10.1016/j.mimet.2014.03.005
    Detection of basal stem rot (BSR) by Ganoderma of oil palms was based on foliar symptoms and production of basidiomata. Enzyme-Linked Immunosorbent Assays-Polyclonal Antibody (ELISA-PAB) and PCR have been proposed as early detection methods for the disease. These techniques are complex, time consuming and have accuracy limitations. An ergosterol method was developed which correlated well with the degree of infection in oil palms, including samples growing in plantations. However, the method was capable of being optimised. This current study was designed to develop a simpler, more rapid and efficient ergosterol method with utility in the field that involved the use of microwave extraction. The optimised procedure involved extracting a small amount of Ganoderma, or Ganoderma-infected oil palm suspended in low volumes of solvent followed by irradiation in a conventional microwave oven at 70°C and medium high power for 30s, resulting in simultaneous extraction and saponification. Ergosterol was detected by thin layer chromatography (TLC) and quantified using high performance liquid chromatography with diode array detection. The TLC method was novel and provided a simple, inexpensive method with utility in the field. The new method was particularly effective at extracting high yields of ergosterol from infected oil palm and enables rapid analysis of field samples on site, allowing infected oil palms to be treated or culled very rapidly. Some limitations of the method are discussed herein. The procedures lend themselves to controlling the disease more effectively and allowing more effective use of land currently employed to grow oil palms, thereby reducing pressure to develop new plantations.
  4. Shueh CS, Neela V, Hussin S, Hamat RA
    J Microbiol Methods, 2013 Aug;94(2):141-143.
    PMID: 23756145 DOI: 10.1016/j.mimet.2013.06.001
    We developed a time-saving and cost-efficient Pulsed Field Gel Electrophoresis (PFGE) method for the typing of Stenotrophomonas maltophilia by modifying the conventional procedures. Our modifications related to the cell suspension preparation, lysis of bacterial cells in plugs, washing steps, and consumption of restriction enzyme. Although few rapid PFGE protocols on Gram-negative bacteria are available, the use of comparatively large amounts of costly reagents prompted us to look for other alternative. Hence, by considering the speed, simplicity, and relatively low cost, the modified protocol may be of more practical value than other established protocols in investigating S. maltophilia nosocomial outbreaks.
  5. Koh SF, Tay ST, Sermswan R, Wongratanacheewin S, Chua KH, Puthucheary SD
    J Microbiol Methods, 2012 Sep;90(3):305-8.
    PMID: 22705921 DOI: 10.1016/j.mimet.2012.06.002
    We have developed a multiplex PCR assay for rapid identification and differentiation of cultures for Burkholderia pseudomallei, Burkholderia thailandensis, Burkholderia mallei and Burkholderia cepacia complex. The assay is valuable for use in clinical and veterinary laboratories, and in a deployable laboratory during outbreaks.
  6. Yu CY, Ang GY, Chua AL, Tan EH, Lee SY, Falero-Diaz G, et al.
    J Microbiol Methods, 2011 Sep;86(3):277-82.
    PMID: 21571011 DOI: 10.1016/j.mimet.2011.04.020
    Cholera is a communicable disease caused by consumption of contaminated food and water. This potentially fatal intestinal infection is characterised by profuse secretion of rice watery stool that can rapidly lead to severe dehydration and shock, thus requiring treatment to be given immediately. Epidemic and pandemic cholera are exclusively associated with Vibrio cholerae serogroups O1 and O139. In light of the need for rapid diagnosis of cholera and to prevent spread of outbreaks, we have developed and evaluated a direct one-step lateral flow biosensor for the simultaneous detection of both V. cholerae O1 and O139 serogroups using alkaline peptone water culture. Serogroup specific monoclonal antibodies raised against lipopolysaccharides (LPS) were used to functionalize the colloidal gold nanoparticles for dual detection in the biosensor. The assay is based on immunochromatographic principle where antigen-antibody reaction would result in the accumulation of gold nanoparticles and thus, the appearance of a red line on the strip. The dry-reagent dipstick format of the biosensor ensure user-friendly application, rapid result that can be read with the naked eyes and cold-chain free storage that is well-suited to be performed at resource-limited settings.
  7. Lau BF, Aminudin N, Abdullah N
    J Microbiol Methods, 2011 Oct;87(1):56-63.
    PMID: 21801760 DOI: 10.1016/j.mimet.2011.07.005
    Mushrooms are considered as important source of biologically active compounds which include low-molecular-mass protein/peptides (LMMP). In this study, we attempted to profile the LMMP from Lignosus rhinocerus, a wild medicinal mushroom, grown by static cultures (SC) and in stirred tank reactor (STR). Crude water extract (CWE) and protein fractions were profiled using H50 ProteinChip® arrays and SELDI-TOF-MS. Three protein peaks of 5.8, 6.9 and 9.1 kDa were found to be common to spectra of L. rhinocerus CWE from both culture conditions. Partial protein purification has resulted in detection of more peaks in the spectra of protein fractions. For protein fractions of L. rhinocerus cultured in STR, most peaks were observed in the range of 3-8 kDa whereas some peaks with molecular mass up to 14.3 kDa were noted in spectra of protein fractions from SC. Our results have demonstrated the optimization of profiling method using SELDI-TOF-MS for fungal LMMP.
  8. Othman M, Loh HS, Wiart C, Khoo TJ, Lim KH, Ting KN
    J Microbiol Methods, 2011 Feb;84(2):161-6.
    PMID: 21094190 DOI: 10.1016/j.mimet.2010.11.008
    The search for antimicrobial agents from plants has been a growing interest in the last few decades. However, results generated from many of these studies cannot be directly compared due to the absence of standardization in particular antimicrobial methods employed. The need for established methods with consistent results for the evaluation of antimicrobial activities from plant extracts has been proposed by many researchers. Nevertheless, there are still many studies reported in the literature describing different methodologies. The aim of this study was to find optimal methods to give consistent quantitative antimicrobial results for studying plant extracts. Three different agar-based assays (pour plate disc diffusion (PPDD), streak plate disc diffusion (SPDD) and well-in agar (WA)) and one broth-based (turbidometric (TB)) assay were used in this study. Extracts from two plant species (Duabanga grandiflora and Acalypha wilkesiana) were tested on two bacterial species, namely Escherichia coli and Staphylococcus aureus. Amongst the agar-based assays, PPDD produced the most reproducible results. TB was able to show the inhibitory effects of the test samples on the growth kinetic of the bacteria including plant extracts with low polarity. We propose that both agar- (i.e PPDD) and broth-based assays should be employed when assessing the antimicrobial activity of plant crude extracts.
  9. Yong VC, Ong KW, Sidik SM, Rosli R, Chong PP
    J Microbiol Methods, 2009 Nov;79(2):242-5.
    PMID: 19737582 DOI: 10.1016/j.mimet.2009.08.019
    In situ Reverse Transcriptase PCR (in situ RT-PCR) can amplify mRNA and localize gene expression in cells. However, this method is not feasible in fungi as the thick fungal cell wall constitutes a barrier to this procedure. We developed a two step in situ RT-PCR procedure which enabled the detection and localization of Candida tropicalis mRNA expression in formalin-fixed, paraffin-embedded (FFPE) mouse kidney sections. This in situ hybridization study revealed the first direct evidence for deposition of Candida tropicalis secreted aspartic proteinase 2 (CtSAP2) in the tip of pseudohyphae and its involvement in acute systemic candidiasis. We conclude that in situ RT-PCR can be successfully applied to FFPE tissues and will offer new perspectives in studying gene expression in Candida species.
  10. Lim CS, Tung CH, Rosli R, Chong PP
    J Microbiol Methods, 2008 Dec;75(3):576-8.
    PMID: 18727938 DOI: 10.1016/j.mimet.2008.07.026
    This report describes a modified, cost-effective method of cell wall disruption for the yeast Candida spp., which employs the use of glass beads in a simple sorbitol lysis buffer. This method can be used in conjunction with a commercial RNA or genomic DNA isolation method to obtain high-quality RNA or DNA.
  11. Lalitha P, Siti Suraiya MN, Lim KL, Lee SY, Nur Haslindawaty AR, Chan YY, et al.
    J Microbiol Methods, 2008 Sep;75(1):142-4.
    PMID: 18579241 DOI: 10.1016/j.mimet.2008.05.001
    A PCR assay has been developed based on a lolB (hemM) gene, which was found to be highly conserved among the Vibrio cholerae species but non-conserved among the other enteric bacteria. The lolB PCR detected all O1, O139 and non-O1/non-O139 serogroup and biotypes of V. cholerae. The analytical specificity of this assay was 100% while the analytical sensitivity was 10 pg/microL and 10(3) CFU/mL at DNA and bacterial level respectively. The diagnostic sensitivity and specificity was 98.5% and 100% respectively.
  12. Ikryannikova LN, Shitikov EA, Zhivankova DG, Il'ina EN, Edelstein MV, Govorun VM
    J Microbiol Methods, 2008 Dec;75(3):385-91.
    PMID: 18694787 DOI: 10.1016/j.mimet.2008.07.005
    A minisequencing method based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI TOF MS) was developed for rapid identification of single nucleotide polymorphisms at bla(TEM) gene codons 104, 164 and 238 associated with extended-spectrum activity on TEM-type beta-lactamases. The method was validated by testing the Escherichia coli and Klebsiella pneumoniae strains possessing the known bla(TEM) gene sequences.
  13. Ikryannikova LN, Afanas'ev MV, Akopian TA, Il'ina EN, Kuz'min AV, Larionova EE, et al.
    J Microbiol Methods, 2007 Sep;70(3):395-405.
    PMID: 17602768
    A MALDI TOF MS based minisequencing method has been developed and applied for the analysis of rifampin (RIF)- and isoniazid (INH)-resistant M. tuberculosis strains. Eight genetic markers of RIF resistance-nucleotide polymorphisms located in RRDR of rpoB gene, and three of INH resistance including codon 315 of katG gene and -8 and -15 positions of the promoter region of fabG1-inhA operon were worked out. Based on the analysis of 100 M. tuberculosis strains collected from the Moscow region in 1997-2005 we deduced that 91% of RIF-resistant and 94% of INH-resistant strains can be identified using the technique suggested. The approach is rapid, reliable and allows to reveal the drug resistance of M. tuberculosis strains within 12 h after sample isolation.
  14. Palasubramaniam S, Muniandy S, Navaratnam P
    J Microbiol Methods, 2008 Jan;72(1):107-9.
    PMID: 18054098
    Multi-resistant Enterobacteriaceae pose a serious threat of hospital acquired infections and their rapid identification is important for better clinical outcome. This study describes the rapid identification of extended-spectrum beta-lactamase-producing Klebsiella pneumoniae of the sulphydryl variable-type by fluorescent in-situ hybridization. The method which rapidly identifies the target genes within 1 h could be a potentially rapid bacterial diagnostic tool.
  15. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    J Microbiol Methods, 2007 Jan;68(1):157-62.
    PMID: 16935372
    In this study we describe a triplex real-time PCR assay that enables the identification of S. aureus and detection of two important antibiotic resistant genes simultaneously using real-time PCR technology in a single assay. In this triplex real-time PCR assay, the mecA (methicillin resistant), femA (species specific S. aureus) and aacA-aphD (aminoglycoside resistant) genes were detected in a single test using dual-labeled Taqman probes. The assay gives simultaneous information for the identification of S. aureus and detection of methicillin and aminoglycoside resistance in staphylococcal isolates. 152 clinical isolates were subjected to this triplex real-time PCR assay. The results of the triplex real-time PCR assay correlated with the results of the phenotypic antibiotic susceptibility testing. The results obtained from triplex real-time PCR assay shows that the primer and probe sets were specific for the identification of S. aureus and were able to detect methicillin- and aminoglycoside-resistant genes. The entire assay can be performed within 3 h which is a very rapid method that can give simultaneous information for the identification of S. aureus and antibiotic resistance pattern of a staphylococcal isolate. The application of this rapid method in microbiology laboratories would be a valuable tool for the rapid identification of the S. aureus isolates and determination of their antibiotic resistance pattern with regards to methicillin and aminoglycosides.
  16. Anuar TS, Al-Mekhlafi HM, Abdul Ghani MK, Abu Bakar E, Azreen SN, Salleh FM, et al.
    J Microbiol Methods, 2013 Mar;92(3):344-8.
    PMID: 23361047 DOI: 10.1016/j.mimet.2013.01.010
    This study was conducted to evaluate two routinely microscopic diagnostic methods in comparison with single-round PCR assay as the reference technique to detect Entamoeba histolytica/dispar/moshkovskii. Examination was performed on 500 stool samples obtained from Orang Asli communities in different states of Malaysia using formalin-ether sedimentation, trichrome staining and single-round PCR techniques. Ninety-three stool samples were detected E. histolytica/dispar/moshkovskii positive by routine microscopy, while single-round PCR detected 106 positive samples. Additional positives detected by PCR assay were eventually confirmed to be negative by both microscopic techniques. Detection rate of E. histolytica/dispar/moshkovskii was highest in combination techniques (18.6%), followed by trichrome staining (13.4%) and formalin-ether sedimentation (11.2%) techniques. Single-round PCR detected 21.2% of the stool samples. The sensitivity and specificity of formalin-ether sedimentation and trichrome staining techniques compared to the reference technique were 31.1% (95% CI: 29.0-36.0) and 94.2% (95% CI: 89.8-98.9), and 53.8% (95% CI: 46.0-76.2) and 97.5% (95% CI: 92.8-99.1), respectively. However, the sensitivity [59.4% (95% CI: 48.9-78.5)] of the method increased when both techniques were performed together, but the specificity decreased to 92.4% (95% CI: 81.0-98.0). The agreement between the reference technique, trichrome staining and combination techniques were statistically significant by Kappa statistics (trichrome staining: K = 0.592, p < 0.05; combination techniques: K = 0.543, p < 0.05). Hence, the combination technique is recommended to be used as a screening method in the diagnosis of E. histolytica/dispar/moshkovskii infections either for clinical or epidemiological study.
  17. Ang GY, Yu CY, Chan KG, Singh KK, Chan Yean Y
    J Microbiol Methods, 2015 Nov;118:99-105.
    PMID: 26342435 DOI: 10.1016/j.mimet.2015.08.024
    In this study, we report for the first time the development of a dry-reagent-based nucleic acid-sensing platform by combining a thermostabilised linear-after-the-exponential (LATE)-PCR assay with a one-step, hybridisation-based nucleic acid lateral flow biosensor. The nucleic acid-sensing platform was designed to overcome the need for stringent temperature control during transportation or storage of reagents and reduces the dependency on skilled personnel by decreasing the overall assay complexity and hands-on time. The platform was developed using toxigenic Vibrio cholerae as the model organism due to the bacterium's propensity to cause epidemic and pandemic cholera. The biosensor generates result which can be visualised with the naked eyes and the limit of detection was found to be 1pg of pure genomic DNA and 10CFU/ml of toxigenic V. cholerae. The dry-reagent-based nucleic acid-sensing platform was challenged with 95 toxigenic V. cholerae, 7 non-toxigenic V. cholerae and 66 other bacterial strains in spiked stool sample and complete agreement was observed when the results were compared to that of monosialoganglioside (GM1)-ELISA. Heat-stability of the thermostabilised LATE-PCR reaction mixes at different storage temperatures (4-56°C) was investigated for up to 90days. The dry-reagent-based genosensing platform with ready-to-use assay components provides an alternative method for sequence-specific detection of nucleic acid without any cold chain restriction that is associated with conventional molecular amplification techniques.
  18. Chin CF, Ler LW, Choong YS, Ong EB, Ismail A, Tye GJ, et al.
    J Microbiol Methods, 2016 Jan;120:6-14.
    PMID: 26581498 DOI: 10.1016/j.mimet.2015.11.007
    Antibody phage display panning involves the enrichment of antibodies against specific targets by affinity. In recent years, several new methods for panning have been introduced to accommodate the growing application of antibody phage display. The present work is concerned with the application of streptavidin mass spectrometry immunoassay (MSIA™) Disposable Automation Research Tips (D.A.R.T's®) for antibody phage display. The system was initially designed to isolate antigens by affinity selection for mass spectrometry analysis. The streptavidin MSIA™ D.A.R.T's® system allows for easy attachment of biotinylated target antigens on the solid surface for presentation to the phage library. As proof-of-concept, a domain antibody library was passed through the tips attached with the Hemolysin E antigen. After binding and washing, the bound phages were eluted via standard acid dissociation and the phages were rescued for subsequent panning rounds. Polyclonal enrichment was observed for three rounds of panning with five monoclonal domain antibodies identified. The proposed method allows for a convenient, rapid and semi-automated alternative to conventional antibody panning strategies.
  19. Radu S, Ling OW, Rusul G, Karim MI, Nishibuchi M
    J Microbiol Methods, 2001 Aug;46(2):131-9.
    PMID: 11412923
    Twenty-five and three strains of Escherichia coli O157:H7 were identified from 25 tenderloin beef and three chicken meat burger samples, respectively. The bacteria were recovered using the immunomagnetic separation procedure followed by selective plating on sorbitol MacConkey agar and were identified as E. coli serotype O157:H7 with three primer pairs that amplified fragments of the SLT-I, SLT-II and H7 genes in PCR assays. Susceptibility testing to 14 antibiotics showed that all were resistant to two or more antibiotics tested. Although all 28 strains contained plasmid, there was very little variation in the plasmid sizes observed. The most common plasmid of 60 MDa was detected in all strains. We used DNA fingerprinting by randomly amplified polymorphic DNA (RAPD) and pulsed-field gel electrophoresis (PFGE) to compare the 28 E. coli O157:H7 strains. At a similarity level of 90%, the results of PFGE after restriction with XbaI separated the E. coli O157:H7 strains into 28 single isolates, whereas RAPD using a single 10-mer oligonucleotides separated the E. coli O157:H7 strains into two clusters and 22 single isolates. These typing methods should aid in the epidemiological clarification of the E. coli O157:H7 in the study area.
  20. Nair S, Schreiber E, Thong KL, Pang T, Altwegg M
    J Microbiol Methods, 2000 Jun;41(1):35-43.
    PMID: 10856775
    Amplified fragment length polymorphism (AFLP) is a recently developed, PCR-based high resolution fingerprinting method that is able to generate complex banding patterns which can be used to delineate intraspecific genetic relationships among bacteria. In the present study, AFLP was evaluated for its usefulness in the molecular typing of Salmonella typhi in comparison to ribotyping and pulsed-field gel electrophoresis (PFGE). Six S. typhi isolates from diverse geographic areas (Malaysia, Indonesia, India, Chile, Papua New Guinea and Switzerland) gave unique, heterogeneous profiles when typed by AFLP, a result which was consistent with ribotyping and PFGE analysis. In a further study of selected S. typhi isolates from Papua New Guinea which caused fatal and non-fatal disease previously shown to be clonally related by PFGE, AFLP discriminated between these isolates but did not indicate a linkage between genotype with virulence. We conclude that AFLP (discriminatory index=0.88) has a higher discriminatory power for strain differentiation among S. typhi than ribotyping (DI=0.63) and PFGE (DI=0.74).
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links