Results: New onset abdominal pain, IBS based on the Rome III criteria, WaSH practices, QOL, anxiety and/or depression, SIBO (hydrogen breath testing) and stools for metagenomic sequencing were assessed in flood victims. Of 211 participants, 37.9% (n = 80) had abdominal pain and 17% (n = 36) with IBS subtyped diarrhea and/or mixed type (n = 27 or 12.8%) being the most common. Poor WaSH practices and impaired quality of life during flood were significantly associated with IBS. Using linear discriminant analysis effect size method, gut dysbiosis was observed in those with anxiety (Bacteroidetes and Proteobacteria, effect size 4.8), abdominal pain (Fusobacteria, Staphylococcus, Megamonas and Plesiomonas, effect size 4.0) and IBS (Plesiomonas and Trabulsiella, effect size 3.0).
Conclusion: Disturbed gut microbiota because of environmentally-derived organisms may explain persistent abdominal pain and IBS after a major environmental disaster in the presence of poor WaSH practices.
RESULTS: Eight weeks of CDAHFD resulted in a significantly altered colon microbiota mainly driven by the bacterial families Lachnospiraceae and Enterobacteriaceae, being decreased and increased in relative abundance, respectively. Metabolomics analysis revealed that CDAHFD decreased colon content of short-chain fatty acid and increased colonic pH. In addition, serum levels of the microbially produced metabolite imidazole propionate were significantly elevated as a consequence of CDAHFD feeding. Hepatic gene expression analysis showed upregulation of mechanistic target of rapamycin (mTOR) and Ras Homolog, MTORC1 binding in addition to downregulation of insulin receptor substrate 1, insulin receptor substrate 2 and the glucagon receptor in CDAHFD fed minipigs. Further, the consequences of CDAHFD feeding were associated with increased levels of circulating cholesterol, bile acids, and glucagon but not total amino acids.
CONCLUSIONS: Our results indicate imidazole propionate as a new potentially relevant factor in relation to NASH and discuss the possible implication of gut microbiota dysbiosis in the development of NASH. In addition, the study emphasizes the need for considering the gut microbiota and its products when developing translational animal models for NASH.