PATIENTS AND METHODS: Materials and methods: The study involved 120 patients with NAFLD, who were divided into two groups depending on BMI and the control group containing 20 practically healthy individuals.
RESULTS: Results: In patients with NAFLD with comorbid obesity, a statistically significant increase in the relative amount of Firmicutes (52.12 [42.38; 67.39]%) and Firmicutes/Bacteroidetes ratio (3.75 [1.7; 9.5]) against the background of a significant decrease in the amount of Bacteroidetes (13.41 [7.45; 26.07]%); in NAFLD patients with overweight, the relative amount of Firmicutes was 49.39 [37.47; 62.73]%, Firmicutes / Bacteroidetes ratio was 1.98 [1.15; 5.92], and the relative amount of Bacteroidetes was 23.69 [12.11; 36.16]%. In the control group, the distribution of the basic GM phylotypes was significantly different; the relative amount of Bacteroidetes was almost the same as of Firmicutes - 34.65 [24.58; 43.53]% and 29.97 [22.52; 41.75]% respectively, and the Firmicutes/Bacteroidetes ratio was 0.64 [0.52; 1.47].
CONCLUSION: Conclusions: The most statistically significant changes in the composition of IM occur due to the increase in the relative amount of Firmicutes and the ratio of Firmicutes/ Bacteroidetes against the background of a decrease in the relative amount of Bacteroidetes. These changes were directly proportional to the increase in BMI, but had no gender features.
RECENT FINDINGS: We performed the systematic review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 protocol to investigate the association between diet and gut microbiota and their influence on metabolic role in pregnant women. Five databases were searched for relevant peer-reviewed articles published in English since 2011. Two-staged screening of 659 retrieved records resulted in the inclusion of 10 studies. The collated findings suggested associations between nutrient intakes and four key microbes: Collinsella, Lachnospira, Sutterella, Faecalibacterium, and the Firmicutes/Bacteroidetes ratio in pregnant women. Dietary intakes in pregnancy were found to modify the gut microbiota and positively influence the cell metabolism in pregnant women. This review, however, emphasizes the importance of conducting well-designed prospective cohorts to investigate the role of changes in dietary intakes within the pregnancy and the influence of such changes on gut microbiota.
OBJECTIVE: The main focus of this review is to discuss and summarise the major risk factors associated with urbanisation that affect human gut microbiota thus affecting human health.
METHODS: Multiple medical literature databases, namely PubMed, Google, Google Scholar, and Web of Science were used to find relevant materials for urbanisation and its major factors affecting human gut microbiota/microbiome. Both layman and Medical Subject Headings (MeSH) terms were used in the search. Due to the scarcity of the data, no limitation was set on the publication date. Relevant materials in the English language which include case reports, chapters of books, journal articles, online news reports and medical records were included in this review.
RESULTS: Based on the data discussed in the review, it is quite clear that urbanisation and its associated factors have long-standing effects on the human gut microbiota that result in alterations of gut microbial diversity and composition. This is a matter of serious concern as chronic inflammatory diseases are on the rise in urbanised societies.
CONCLUSION: A better understanding of the factors associated with urbanisation will help us to identify and implement new biological and social approaches to prevent and treat diseases and improve health globally by deepening our understanding of these relationships and increasing studies across urbanisation gradients.HIGHLIGHTSHuman gut microbiota have been linked to almost every important function, including metabolism, intestinal homeostasis, immune system, biosynthesis of vitamins, brain processes, and behaviour.However, dysbiosis i.e., alteration in the composition and diversity of gut microbiota is associated with the pathogenesis of many chronic conditions.In the 21st century, urbanisation represents a major demographic shift in developed and developing countries.During this period of urbanisation, humans have been exposed to many environmental exposures, all of which have led to the dysbiosis of human gut microbiota.The main focus of the review is to discuss and summarise the major risk factors associated with urbanisation and how it affects the diversity and composition of gut microbiota which ultimately affects human health.
METHODS: Over 21 days, ten healthy participants consumed OsomeFood meals for five consecutive weekday lunches and dinners and resumed their regular diets for other days/meals. On follow-up days, participants completed questionnaires to record satiety, energy and health, and provided stool samples. To document microbiome variations and identify associations, species and functional pathway annotations were analyzed by shotgun sequencing. Shannon diversity and regular diet calorie intake subsets were also assessed.
RESULTS: Overweight participants gained more species and functional pathway diversity than normal BMI participants. Nineteen disease-associated species were suppressed in moderate-responders without gaining diversity, and in strong-responders with diversity gains along with health-associated species. All participants reported improved short-chain fatty acids production, insulin and γ-aminobutyric acid signaling. Moreover, fullness correlated positively with Bacteroides eggerthii; energetic status with B. uniformis, B. longum, Phascolarctobacterium succinatutens, and Eubacterium eligens; healthy status with Faecalibacterium prausnitzii, Prevotella CAG 5226, Roseburia hominis, and Roseburia sp. CAG 182; and overall response with E. eligens and Corprococcus eutactus. Fiber consumption was negatively associated with pathogenic species.
CONCLUSION: Although the AWE diet was consumed for only five days a week, all participants, especially overweight ones, experienced improved fullness, health status, energy and overall responses. The AWE diet benefits all individuals, especially those of higher BMI or low-fiber consumption.