Displaying all 6 publications

Abstract:
Sort:
  1. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA
    Br J Nutr, 2014 Oct 28;112(8):1303-14.
    PMID: 25196744 DOI: 10.1017/S0007114514002177
    The energy-salvaging capacity of the gut microbiota from dietary ingredients has been proposed as a contributing factor for the development of obesity. This knowledge generated interest in the use of non-digestible dietary ingredients such as prebiotics to manipulate host energy homeostasis. In the present study, the in vitro response of obese human faecal microbiota to novel oligosaccharides was investigated. Dextrans of various molecular weights and degrees of branching were fermented with the faecal microbiota of healthy obese adults in pH-controlled batch cultures. Changes in bacterial populations were monitored using fluorescent in situ hybridisation and SCFA concentrations were analysed by HPLC. The rate of gas production and total volume of gas produced were also determined. In general, the novel dextrans and inulin increased the counts of bifidobacteria. Some of the dextrans were able to alter the composition of the obese human microbiota by increasing the counts of Bacteroides-Prevotella and decreasing those of Faecalibacterium prausnitzii and Ruminococcus bromii/R. flavefaciens. Considerable increases in SCFA concentrations were observed in response to all substrates. Gas production rates were similar during the fermentation of all dextrans, but significantly lower than those during the fermentation of inulin. Lower total gas production and shorter time to attain maximal gas production were observed during the fermentation of the linear 1 kDa dextran than during the fermentation of the other dextrans. The efficacy of bifidobacteria to ferment dextrans relied on the molecular weight and not on the degree of branching. In conclusion, there are no differences in the profiles between the obese and lean human faecal fermentations of dextrans.
    Matched MeSH terms: Prevotella/classification; Prevotella/growth & development; Prevotella/immunology; Prevotella/metabolism
  2. Saminathan M, Sieo CC, Gan HM, Ravi S, Venkatachalam K, Abdullah N, et al.
    J Sci Food Agric, 2016 Oct;96(13):4565-74.
    PMID: 26910767 DOI: 10.1002/jsfa.7674
    BACKGROUND: Condensed tannin (CT) fractions of different molecular weights (MWs) may affect rumen microbial metabolism by altering bacterial diversity. In this study the effects of unfractionated CTs (F0) and five CT fractions (F1-F5) of different MWs (F1, 1265.8 Da; F2, 1028.6 Da; F3, 652.2 Da; F4, 562.2 Da; F5, 469.6 Da) from Leucaena leucocephala hybrid-Rendang (LLR) on the structure and diversity of the rumen bacterial community were investigated in vitro.

    RESULTS: Real-time polymerase chain reaction assay showed that the total bacterial population was not significantly (P > 0.05) different among the dietary treatments. Inclusion of higher-MW CT fractions F1 and F2 significantly (P Prevotella and unclassified Clostridiales was significantly (P 

    Matched MeSH terms: Prevotella/classification; Prevotella/growth & development; Prevotella/isolation & purification; Prevotella/metabolism
  3. Nor Adinar Baharuddin
    Malaysian Dental Journal, 2007;28(2):97-98.
    MyJurnal
    There are evidences that chronic oral infections are associated with cardiovascular disease (CVD). Periodontal disease is a common, mixed oral infection affecting the supporting structures around the teeth. It was reported that 75% of the adult population has gingivitis and 20% to 30% exhibits the severe destructive form of periodontitis. Although more than 500 bacterial species inhabit the human oral cavity, only a few Gram negative bacteria such as Prevotella intermedia, Fusobacterium nucleatum, Porphyromonas gingivalis, Tannerella forsythensis, Treponema denticola and Actinobacillus actinomycetamcomitans causes gingivitis and periodontitis. These periodontal pathogen occupy the subgingival space and organize as a bacterial biofilm. The bacterial biofilm will be in direct contact with host tissues along an ulcerated epithelial interface, called periodontal pocket. The break in the epithelial integrity directly exposes the host to bacteria and their products eg. lipopolysaccharide (LPS) endotoxin. (Copied from article).
    Matched MeSH terms: Prevotella intermedia
  4. Hasain Z, Mokhtar NM, Kamaruddin NA, Mohamed Ismail NA, Razalli NH, Gnanou JV, et al.
    PMID: 32500037 DOI: 10.3389/fcimb.2020.00188
    Gestational diabetes mellitus (GDM) is defined as impaired glucose tolerance recognized during pregnancy. GDM is associated with metabolic disorder phenotypes, such as obesity, low-grade inflammation, and insulin resistance. Following delivery, nearly half of the women with a history of GDM have persistent postpartum glucose intolerance and an increased risk of developing type 2 diabetes mellitus (T2DM), as much as 7-fold. The alarming upward trend may worsen the socioeconomic burden worldwide. Accumulating evidence strongly associates gut microbiota dysbiosis in women with GDM, similar to the T2DM profile. Several metagenomics studies have shown gut microbiota, such as Ruminococcaceae, Parabacteroides distasonis, and Prevotella, were enriched in women with GDM. These microbiota populations are associated with metabolic pathways for carbohydrate metabolism and insulin signaling, suggesting a potential "gut microbiota signature" in women with GDM. Furthermore, elevated expression of serum zonulin, a marker of gut epithelial permeability, during early pregnancy in women with GDM indicates a possible link between gut microbiota and GDM. Nevertheless, few studies have revealed discrepant results, and the interplay between gut microbiota dysbiosis and host metabolism in women with GDM is yet to be elucidated. Lifestyle modification and pharmacological treatment with metformin showed evidence of modulation of gut microbiota and proved to be beneficial to maintain glucose homeostasis in T2DM. Nonetheless, post-GDM women have poor compliance toward lifestyle modification after delivery, and metformin treatment remains controversial as a T2DM preventive strategy. We hypothesized modulation of the composition of gut microbiota with probiotics supplementation may reverse postpartum glucose intolerance in post-GDM women. In this review, we addressed gut microbiota dysbiosis and the possible mechanistic links between the host and gut microbiota in women with GDM. Furthermore, this review highlights the potential therapeutic use of probiotics in post-GDM women as a T2DM preventive strategy.
    Matched MeSH terms: Prevotella
  5. Rahman Jamal
    MyJurnal
    Colorectal cancer (CRC) is an important health problem that is on the rise globally, where it is the fourth most com-mon cause of deaths from cancer. CRC is now the 2nd commonest cancer in men and 3rd commonest in women in Malaysia. Diet, lifestyle, genetics and environmental interaction, together with underlying gut conditions such as inflammatory bowel disease have been reported to contribute to the disease. In addition, the gut microbiome has also been increasingly reported to be associated with CRC development, with dysbiosis of the commensal bacteria ob-served in CRC patients. Bacterial genera such as Bacteroides, Fusobacterium and Prevotella are more commonly de-tected in CRC patients compared to healthy individuals. Nevertheless, not much is known about the gut microbiome among Malaysians with different ethnicities. In Malaysia, the Chinese has the highest incidence of CRC, followed by Malays and Indians. The reason behind this difference may be contributed by the differences in the dietary intake that could modulate the gut microbiome and contribute towards the development of CRC. The current knowledge on this field still much depends on reports from individuals of American, European, Chinese, Brazilian and Japanese descendants in origin. The oncogenic potential of bacteria was suggested to include inflammation and the produc-tion of mutagenic toxin. A significant increase in certain intestinal microbiota including the genuses Enteroccus and Streptococcus spp. was detected in the advanced stage of colorectal adenoma. However, there are discrepancies in the previous studies, where some bacteria genera might be over-reported or underestimated. It is likely that the gut microbiome differs between populations. There is also no available data on the gut microbiome of the healthy individuals, colorectal adenoma (pre-cancerous) and colorectal cancer patients in the Malaysian population. Recent advancements in next generation sequencing allow faster and more accurate determination of microbial consortium in various niches of the human body and environment. In particular, sequencing of the 16S rRNA gene with specific primers have been reported to allow accurate determination of bacterial orders commonly found in the human gut as well as for those which are not expected in the digestive system. Recent developments in gut microbiome DNA ex-traction also contributed to the robustness of gut microbiome determination and analysis. All the above will contrib-ute towards an accurate and rapid cataloging process of the Malaysian gut microbiome and also enable comparison between healthy individuals, colorectal adenoma and CRC patients of the Malaysian population.
    Matched MeSH terms: Prevotella
  6. Gopinath D, Kunnath Menon R, Chun Wie C, Banerjee M, Panda S, Mandal D, et al.
    J Oral Microbiol, 2020 Dec 09;13(1):1857998.
    PMID: 33391629 DOI: 10.1080/20002297.2020.1857998
    Objective: While some oral carcinomas appear to arise de novo, others develop within long-standing conditions of the oral cavity that have malignant potential, now known as oral potentially malignant disorders (OPMDs). The oral bacteriome associated with OPMD has been studied to a lesser extent than that associated with oral cancer. To characterize the association in detail we compared the bacteriome in whole mouth fluid (WMF) in patients with oral leukoplakia, oral cancer and healthy controls. Methods: WMF bacteriome from 20 leukoplakia patients, 31 patients with oral cancer and 23 healthy controls were profiled using the Illumina MiSeq platform. Sequencing reads were processed using DADA2, and taxonomical classification was performed using the phylogenetic placement method. Sparse Partial Least Squares Regression Discriminant Analysis model was used to identify bacterial taxa that best discriminate the studied groups. Results: We found considerable overlap between the WMF bacteriome of leukoplakia and oral cancer while a clearer separation between healthy controls and the former two disorders was observed. Specifically, the separation was attributed to 14 taxa belonging to the genera Megaspheara, unclassified enterobacteria, Prevotella, Porphyromonas, Rothia and Salmonella, Streptococcus, and Fusobacterium. The most discriminative bacterial genera between leukoplakia and oral cancer were Megasphaera, unclassified Enterobacteriae, Salmonella and Prevotella.Conclusion: Oral bacteria may play a role in the early stages of oral carcinogenesis as a dysbiotic bacteriome is associated with oral leukoplakia and this resembles that of oral cancer more than healthy controls. Our findings may have implications for developing oral cancer prevention strategies targeting early microbial drivers of oral carcinogenesis.
    Matched MeSH terms: Prevotella
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links