Displaying all 8 publications

Abstract:
Sort:
  1. Etemadi MR, Sekawi Z, Othman N, Lye MS, Moghaddam FY
    Evol Bioinform Online, 2013;9:151-61.
    PMID: 23641140 DOI: 10.4137/EBO.S10999
    Human respiratory syncytial virus (RSV) is a major viral pathogen associated with acute lower respiratory tract infections (ALRTIs) among hospitalized children. In this study, the genetic diversity of the RSV strains was investigated among nasopharyngeal aspirates (NPA) taken from children less than 5 years of age hospitalized with ALRTIs in Hospital Serdang, Malaysia. A total of 165 NPA samples were tested for the presence of RSV and other respiratory viruses from June until December 2009. RSV was found positive in 83 (50%) of the samples using reverse transcription polymerase chain reaction (RT-PCR). Further classification of 67 RSV strains showed that subgroups A and B comprised 11/67 (16.4%) and 56/67 (83.6%) of the strains, respectively. The second hypervariable region at the carboxyl-terminal of the G gene was amplified and sequenced in order to do phylogenetic study. The phylogenetic relationships of the samples were determined separately for subgroups A and B using neighbor joining (NJ), maximum parsimony (MP), and Bayesian inference (BI). Phylogenetic analysis of the 32 sequenced samples showed that all 9 RSV-A strains were clustered within NA1 genotype while the remaining 23 strains of the RSV-B subgroup could be grouped into a clade consisted of strains with 60-nucleotide duplication region. They were further classified into newly discovered BA10 and BA9 genotypes. The present finding suggests the emergence of RSV genotypes of NA1 and BA. This is the first documentation of the phylogenetic relationship and genetic diversity of RSV strains among hospitalized children diagnosed with ALRTI in Serdang, Malaysia.
  2. Koh ICC, Badrul Nizam BH, Muhammad Abduh Y, Abol Munafi AB, Iehata S
    Evol Bioinform Online, 2019;15:1176934319850821.
    PMID: 31217688 DOI: 10.1177/1176934319850821
    Malaysian Mahseer (Tor tambroides) is considered as a good prospect for aquaculture in Malaysia. However, knowledge about Malaysian Mahseer-associated sperm microbiota is still limited, although some studies reported that sperm-related bacteria are a factor in the decline of sperm quality, as sperm may become the carrier of pathogenic bacteria to the egg. The goal of this study was to evaluate the sperm microbiota associated with Malaysian Mahseer from 3 different locations (Universiti Malaysia Terengganu [UMT], Ajil, and Pahang) using polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) fingerprinting and to compare location differences by cluster analysis. Our results showed that the UMT sample had different sperm microbiota composition and a different trend in its relationship with sperm quality. Correlation analysis showed a relationship between bacterial diversity and sperm quality. Phylogenetic analysis indicated that sperm microbiota was composed of diverse phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Interestingly, bacteria such as Salinisphaera sp., Pelomonas sp., and Staphylococcus spp. were detected in all the locations, suggesting that these bacteria are indigenous bacterial members of the Malaysian Mahseer sperm microbiota, although their function is still unclear.
  3. Joseph N, Clayton JB, Hoops SL, Linhardt CA, Mohd Hashim A, Mohd Yusof BN, et al.
    Evol Bioinform Online, 2020;16:1176934320965943.
    PMID: 33281440 DOI: 10.1177/1176934320965943
    Childhood obesity is a serious public health problem worldwide. Perturbations in the gut microbiota composition have been associated with the development of obesity in both children and adults. Probiotics, on the other hand, are proven to restore the composition of the gut microbiome which helps reduce the development of obesity. However, data on the effect of probiotics on gut microbiota and its association with childhood obesity is limited. This study aims to determine the effect of probiotics supplement intervention on gut microbiota profiles in obese and normal-weight children. A total of 37 children, 17 normal weight, and 20 overweight school children from a government school in Selangor were selected to participate in this study. Participants were further divided into intervention and control groups. The intervention groups received daily probiotic drinks while the control groups continued eating their typical diet. Fecal samples were collected from the participants for DNA extraction. The hypervariable V3 and V4 regions of 16S rRNA gene were amplified and sequenced using the Illumina MiSeq platform. No significant differences in alpha diversity were observed between normal weight and obese children in terms of the Shannon Index for evenness or species richness. However, a higher intervention effect on alpha diversity was observed among normal-weight participants compared to obese. The participants' microbiome was found to fluctuate throughout the study. Analysis of the taxa at species level showed an increase in Bacteroides ovatus among the normal weight cohort. Genus-level comparison revealed a rise in genus Lachnospira and Ruminococcus in the overweight participants after intervention, compared to the normal-weight participants. The probiotics intervention causes an alteration in gut microbiota composition in both normal and overweight children. Though the association could not be defined statistically, this study has provided an improved understanding of the intervention effect of probiotics on gut microbiome dysbiosis in an underrepresented population.
  4. Yang SK, Tan NP, Chong CW, Abushelaibi A, Lim SH, Lai KS
    Evol Bioinform Online, 2021;17:1176934320938391.
    PMID: 34017165 DOI: 10.1177/1176934320938391
    Antibiotic resistance is a major global health issue that has seen alarming rates of increase in all parts of the world over the past two decades. The surge in antibiotic resistance has resulted in longer hospital stays, higher medical costs, and elevated mortality rates. Constant attempts have been made to discover newer and more effective antimicrobials to reduce the severity of antibiotic resistance. Plant secondary metabolites, such as essential oils, have been the major focus due to their complexity and bioactive nature. However, the underlying mechanism of their antimicrobial effect remains largely unknown. Understanding the antimicrobial mode of action of essential oils is crucial in developing potential strategies for the use of essential oils in a clinical setting. Recent advances in genomics and proteomics have enhanced our understanding of the antimicrobial mode of action of essential oils. We might well be at the dawn of completing a mystery on how essential oils carry out their antimicrobial activities. Therefore, an overview of essential oils with regard to their antimicrobial activities and mode of action is discussed in this review. Recent approaches used in identifying the antimicrobial mode of action of essential oils, specifically from the perspective of genomics and proteomics, are also synthesized. Based on the information gathered from this review, we offer recommendations for future strategies and prospects for the study of essential oils and their function as antimicrobials.
  5. Tan MP, Wong LL, Razali SA, Afiqah-Aleng N, Mohd Nor SA, Sung YY, et al.
    Evol Bioinform Online, 2019;15:1176934319892284.
    PMID: 31839703 DOI: 10.1177/1176934319892284
    Aquatic ecosystems that form major biodiversity hotspots are critically threatened due to environmental and anthropogenic stressors. We believe that, in this genomic era, computational methods can be applied to promote aquatic biodiversity conservation by addressing questions related to the evolutionary history of aquatic organisms at the molecular level. However, huge amounts of genomics data generated can only be discerned through the use of bioinformatics. Here, we examine the applications of next-generation sequencing technologies and bioinformatics tools to study the molecular evolution of aquatic animals and discuss the current challenges and future perspectives of using bioinformatics toward aquatic animal conservation efforts.
  6. Do TD, Thi Mai N, Duy Khoa TN, Abol-Munafi AB, Liew HJ, Kim CB, et al.
    Evol Bioinform Online, 2019;15:1176934319853580.
    PMID: 31236006 DOI: 10.1177/1176934319853580
    Temperature is an abiotic factor that affects various biological and physiological processes in fish. Temperature stress is known to increase the production of reactive oxygen species (ROS) that subsequently cause oxidative stress. Fish is known to evolve a system of antioxidant enzymes to reduce ROS toxicology. Glutathione peroxidase (GPx) family consists of key enzymes that protect fish from oxidative stress. In this study, full-length GPx1 cDNA (GenBank accession no. KY984468) of Tor tambroides was cloned and characterized by rapid amplification of cDNA ends (RACE). The 899-base-pair (bp) GPx1 cDNA includes a 576-bp open reading frame encoding for 191 amino acids, plus 28 bp of 5'-untranslated region (UTR) and 295 bp of 3'-UTR. Homology analysis revealed that GPx1 of T tambroides (Tor-GPx1) shared high similarity with GPx1 sequences of other fish species. The phylogenetic construction based on the amino acid sequence showed that Tor-GPx1 formed a clade with GPx1 sequences of various fish species. Real-time polymerase chain reaction (PCR) was performed to assess the levels of GPx1 gene expression in the liver and muscle of T tambroides under thermal stress. The results indicated that GPx1 gene expression was down-regulated under decreased temperature. However, there was no significant difference between GPx1 gene expression in fish exposed to high temperature and control. Our study provides the first data regarding GPx gene expression in T tambroides under thermal stress.
  7. Mohd Yussup SS, Marzukhi M, Md-Zain BM, Mamat K, Mohd Yusof FZ
    Evol Bioinform Online, 2017;13:1176934317735318.
    PMID: 29085238 DOI: 10.1177/1176934317735318
    The conventional technique such as patrilocality suggests some substantial effects on population diversity. With that, this particular study investigated the paternal line, specifically Scientific Working Group on DNA Analysis Methods (SWGDAM)-recommended Y-STR markers, namely, DYS19, DYS385, DYS389I/II, DYS390, DYS391, DYS392, DYS393, DYS438, and DYS439. These markers were tested to compare 184 Orang Asli individuals from 3 tribes found in Peninsular Malaysia. As a result, the haplotype diversity and the discrimination capacity obtained were 0.9987 and 0.9076, respectively. Besides, the most diverse marker was DYS385b, whereas the least was DYS391. Furthermore, the Senoi and Proto-Malay tribes were found to be the most distant, whereas the Senoi and Negrito clans were almost similar to each other. In addition, the analysis of molecular variance analysis revealed 82% of variance within the population, but only 18% of difference between the tribes. Finally, the phylogenetic trees constructed using Neighbour Joining and UPGMA (Unweighted Pair Group Method with Arithmetic Mean) displayed several clusters that were tribe specific. With that, future studies are projected to analyse individuals based on more specific sub-tribes.
  8. Al-Khatib RM, Abdullah R, Rashid NA
    Evol Bioinform Online, 2010 Apr 09;6:27-45.
    PMID: 20458364
    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links