Affiliations 

  • 1 Department of Genetics and Cellular Biology, University of Malaya, Kuala Lumpur, Malaysia
J Virol Methods, 1997 Jun;66(1):5-14.
PMID: 9220385

Abstract

Human herpesvirus-6 exists in two forms, HHV-6A which has not been clearly associated with any disease, and HHV-6B, the causative agent of exanthem subitum. The two variants have been distinguished by techniques such as dot blotting and restriction fragment length polymorphism of PCR products. This study aims to establish the prevalence of HHV-6A and HHV-6B in carcinoma tissues using variant-specific oligonucleotide probes. A total of 73 archived carcinoma biopsies from the oral, salivary gland, larynx, breast and cervix were obtained with seven histologically normal controls. In situ hybridization was carried out with nonradioactively labelled variant-specific probes. Samples that hybridized with both variant A and B probes were subjected further to nested PCR and digested with HindIII to distinguish the variants. A hybridization signal was observed in 76.2% of oral carcinoma tissue and 75.0% of salivary gland carcinoma tissue. In contrast, only 33.3% of cervical carcinoma tissue were positive for HHV-6 DNA. A hybridization signal was noted in all 4 laryngeal carcinoma tissues studied. However, the 10 breast carcinoma tissues studied were negative, as was the histologically normal tissue. The virus possesses tumourigenic potential and demonstrates virus transactivating properties. The frequency of HHV-6 variants in certain tumours suggest a cofactorial role in multistep carcinogenesis. While PCR amplifies selectively the predominant variant in a sample, this was not seen by in situ hybridization. The in situ hybridization technique allowed the localization of both HHV-6A and HHV-6B in the nuclei of transformed regions.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.