A total of 234 sera from healthy Malaysians of diverse ethnic origins were tested for antibody to the Z29 and prototype GS strains of HHV-6. The prevalence in the races ranged from 58 to 80% for the GS strain and 49 to 76% for the Z29 strain. The highest prevalence was in Malays with semi-urban cultural lifestyles and lowest was in the indigenous rural tribes (Ibans, Kadazans, Bidayuhs, and Orang Asli). The antibody titres to GS and Z29 virus capsid antigens differed in 11 (4.7%) samples by more than 2 dilutions. In 9 of the 11 sera the titres to GS strain were higher than to the Z29 strain. The differences in the antibody titres between strains of HHV-6 may reflect subtle changes in antigen structure of the virus recognised by some individuals.
Human herpesvirus-6 exists in two forms, HHV-6A which has not been clearly associated with any disease, and HHV-6B, the causative agent of exanthem subitum. The two variants have been distinguished by techniques such as dot blotting and restriction fragment length polymorphism of PCR products. This study aims to establish the prevalence of HHV-6A and HHV-6B in carcinoma tissues using variant-specific oligonucleotide probes. A total of 73 archived carcinoma biopsies from the oral, salivary gland, larynx, breast and cervix were obtained with seven histologically normal controls. In situ hybridization was carried out with nonradioactively labelled variant-specific probes. Samples that hybridized with both variant A and B probes were subjected further to nested PCR and digested with HindIII to distinguish the variants. A hybridization signal was observed in 76.2% of oral carcinoma tissue and 75.0% of salivary gland carcinoma tissue. In contrast, only 33.3% of cervical carcinoma tissue were positive for HHV-6 DNA. A hybridization signal was noted in all 4 laryngeal carcinoma tissues studied. However, the 10 breast carcinoma tissues studied were negative, as was the histologically normal tissue. The virus possesses tumourigenic potential and demonstrates virus transactivating properties. The frequency of HHV-6 variants in certain tumours suggest a cofactorial role in multistep carcinogenesis. While PCR amplifies selectively the predominant variant in a sample, this was not seen by in situ hybridization. The in situ hybridization technique allowed the localization of both HHV-6A and HHV-6B in the nuclei of transformed regions.
Archival oral tissues comprising 51 squamous cell carcinomas, 18 non-malignant lesions and 7 normal mucosa samples were investigated for human herpesvirus-6 (HHV-6)-encoded antigens and HHV-6 DNA. The virus-specific antigens were detected by an immunohistochemical method using monoclonal antibodies. Two further techniques used for HHV-6 DNA detection included the polymerase chain reaction (PCR) with virus-specific primers and in situ hybridization using digoxigenin-labelled oligonucleotides specific for HHV-6A and HHV-6B genotypes. A high proportion (79-80%) of the squamous cell carcinomas were positive for HHV-6 with the various detection methods. In cases of lichen planus and leukoplakia a high prevalence rate (67-100%) was noted with in situ hybridization and immunohistochemical techniques but a lower proportion (22-33%) was detected with the PCR method. All 7 normal tissues tested were negative for HHV-6. The HHV-6 variant B was found in 60% of the oral carcinoma tissues analysed. The study demonstrates the frequent presence of HHV-6 in neoplastic and non-malignant lesions of the oral cavity. While the role of HHV-6 in oral mucosal tissues remains to be determined, the in vitro tumorigenic potential of the virus suggests a possible role in the etiopathogenesis of oral lesions.