Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Guo C, Dong J, Deng L, Cheng K, Xu Y, Zhu H, et al.
    Molecules, 2023 May 25;28(11).
    PMID: 37298809 DOI: 10.3390/molecules28114332
    The quality of Panax Linn products available in the market is threatened by adulteration with different Panax species, such as Panax quinquefolium (PQ), Panax ginseng (PG), and Panax notoginseng (PN). In this paper, we established a 2D band-selective heteronuclear single quantum coherence (bs-HSQC) NMR method to discriminate species and detect adulteration of Panax Linn. The method involves selective excitation of the anomeric carbon resonance region of saponins and non-uniform sampling (NUS) to obtain high-resolution spectra in less than 10 min. The combined strategy overcomes the signal overlap limitation in 1H NMR and the long acquisition time in traditional HSQC. The present results showed that twelve well-separated resonance peaks can be assigned in the bs-HSQC spectra, which are of high resolution, good repeatability, and precision. Notably, the identification accuracy of species was found to be 100% for all tests conducted in the present study. Furthermore, in combination with multivariate statistical methods, the proposed method can effectively determine the composition proportion of adulterants (from 10% to 90%). Based on the PLS-DA models, the identification accuracy was greater than 80% when composition proportion of adulterants was 10%. Thus, the proposed method may provide a fast, practical, and effective analysis technique for food quality control or authenticity identification.
    Matched MeSH terms: Saponins*
  2. Chan KC, Teo LE
    Chem Pharm Bull (Tokyo), 1969 Jun;17(6):1284-9.
    PMID: 5804471
    Matched MeSH terms: Saponins/analysis*
  3. Osman WNAW, Selvarajah D, Samsuri S
    Molecules, 2021 Aug 11;26(16).
    PMID: 34443445 DOI: 10.3390/molecules26164856
    Saponin is a biopesticide used to suppress the growth of the golden apple snail population. This study aims to determine the stabilized conditions for saponin storage. The maceration process was used for saponin extraction, and for saponin concentration, progressive freeze concentration (PFC) was used. Afterwards, stability analysis was performed by storing the sample for 21 days in two conditions: Room temperature (26 °C) and cold room (10 °C). The samples kept in a cold room were sterilized samples that undergo thermal treatment by placing the sample in the water bath. The non-sterilized samples were kept in room temperature condition for 21 days. The results showed that saponin stored in the cold room (sterilized sample) has low degradation with higher concentration than those stored at room temperature in stability analysis with the highest saponin concentration (0.730 mg/mL) at a concentration temperature of -6 °C and concentration time of 15 min. The lowest saponin concentration obtained by saponin stored at room temperature (non-sterilized sample) is 0.025 mg/mL at a concentration temperature of -6 °C and concentration time of 10 min. Thus, the finding concluded that saponin is sensitive to temperature. Hence, the best storage condition to store saponin after thermal treatment is to keep it in a cold room at 10 °C.
    Matched MeSH terms: Saponins/chemistry*
  4. Teo LE, Pachiaper G, Chan KC, Hadi HA, Weber JF, Deverre JR, et al.
    J Ethnopharmacol, 1990 Feb;28(1):63-101.
    PMID: 2314111
    A large phytochemical survey of the flora of the Malaysian Peninsula and Sabah is described, covering the systematic search for alkaloids, and partly, for saponins and flavonoids. Details of some chemical studies are reported. This emphasizes the great interest of such a study.
    Matched MeSH terms: Saponins/analysis; Saponins/isolation & purification; Saponins/pharmacology
  5. Jomori T, Shiroyama S, Ise Y, Kohtsuka H, Matsuda K, Kuranaga T, et al.
    J Nat Med, 2019 Sep;73(4):814-819.
    PMID: 31054009 DOI: 10.1007/s11418-019-01315-6
    Two new steroidal saponins, scrobiculosides A and B, were isolated from the deep-sea sponge Pachastrella scrobiculosa, collected at a depth of 200 m off Miura Peninsula, Japan. The aglycones of scrobiculosides A and B feature a vinylic cyclopropane and a ∆24,25 exomethylene on the side chains, respectively. Both saponins have a common sugar moiety composed of β-D-galactopyranosyl-(1 → 2)-6-acetyl-β-D-glucopyranoside, with the exception of an acetyl group on C6″ in scrobiculoside A. Scrobiculoside A exhibited cytotoxicity against HL-60 and P388 cells, with IC50 values of 52 and 61 μM, respectively.
    Matched MeSH terms: Saponins/isolation & purification*; Saponins/pharmacology*; Saponins/chemistry
  6. H M, Khatib A, Shaari K, Abas F, Shitan M, Kneer R, et al.
    J Agric Food Chem, 2012 Jan 11;60(1):410-7.
    PMID: 22084897 DOI: 10.1021/jf200270y
    The metabolites of three species of Apiaceae, also known as Pegaga, were analyzed utilizing (1)H NMR spectroscopy and multivariate data analysis. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) resolved the species, Centella asiatica, Hydrocotyle bonariensis, and Hydrocotyle sibthorpioides, into three clusters. The saponins, asiaticoside and madecassoside, along with chlorogenic acids were the metabolites that contributed most to the separation. Furthermore, the effects of growth-lighting condition to metabolite contents were also investigated. The extracts of C. asiatica grown in full-day light exposure exhibited a stronger radical scavenging activity and contained more triterpenes (asiaticoside and madecassoside), flavonoids, and chlorogenic acids as compared to plants grown in 50% shade. This study established the potential of using a combination of (1)H NMR spectroscopy and multivariate data analyses in differentiating three closely related species and the effects of growth lighting, based on their metabolite contents and identification of the markers contributing to their differences.
    Matched MeSH terms: Saponins/analysis; Saponins/metabolism
  7. Zhang M, Yang Q, Zhang X, Wu H
    Nat Prod Res, 2021 Oct;35(20):3426-3431.
    PMID: 31821060 DOI: 10.1080/14786419.2019.1700509
    A new cycloartane triterpene bisdesmoside, soulieoside T (1), and one known compound, oleanolic acid (2), were isolated from the ethanolic extract of the rhizomes of Actaea vaginata. Their structures were elucidated by spectroscopic methods and by comparison with data reported in the literature. Compound 1 was evaluated for cytotoxic activities against three human cancer cell lines.
    Matched MeSH terms: Saponins/pharmacology*; Saponins/chemistry
  8. Salhi N, Mohammed Saghir SA, Terzi V, Brahmi I, Ghedairi N, Bissati S
    Biomed Res Int, 2017;2017:7526291.
    PMID: 29226147 DOI: 10.1155/2017/7526291
    Aim: This study investigated the antifungal properties of aqueous extracts obtained from indigenous plants that grow spontaneously in the Northern Sahara of Algeria. The activities of these plants in controlling two fungal species that belong to Fusarium genus were evaluated in an in vitro assay.

    Materials and Methods: Fresh aerial parts of four plant species (Artemisia herba alba, Cotula cinerea, Asphodelus tenuifolius, and Euphorbia guyoniana) were collected for the preparation of aqueous extracts. Two levels of dilution (10% and 20%) of the pure extracts were evaluated against Fusarium graminearum and Fusarium sporotrichioides.

    Results: The results of this study revealed that the A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana aqueous extracts are effective at both concentrations of 10% and 20% for the Fusarium mycelia growth inhibition. In particular, A. tenuifolius extract is effective against F. graminearum, whereas F. sporotrichioides mycelium growth is strongly affected by the E. guyoniana 20% extract. The phytochemical characterization of the compositions of the aqueous extracts has revealed that the presence of some chemical compounds (tannins, flavonoids, saponins, steroids, and alkaloids) is likely to be responsible for the antifungal activities sought.

    Conclusion: The antifungal properties of A. herba alba, C. cinerea, A. tenuifolius, and E. guyoniana make these plants of potential interest for the control of fungi affecting both wheat yield and safety.

    Matched MeSH terms: Saponins/pharmacology; Saponins/chemistry
  9. de Costa F, Barber CJ, Reed DW, Covello PS
    Methods Mol Biol, 2016;1405:43-8.
    PMID: 26843164 DOI: 10.1007/978-1-4939-3393-8_5
    Centella asiatica (L.) Urban (Apiaceae), a small annual plant that grows in India, Sri Lanka, Malaysia, and other parts of Asia, is well-known as a medicinal herb with a long history of therapeutic uses. The bioactive compounds present in C. asiatica leaves include ursane-type triterpene sapogenins and saponins-asiatic acid, madecassic acid, asiaticoside, and madecassoside. Various bioactivities have been shown for these compounds, although most of the steps in the biosynthesis of triterpene saponins, including glycosylation, remain uncharacterized at the molecular level. This chapter describes an approach that integrates partial enzyme purification, proteomics methods, and transcriptomics, with the aim of reducing the number of cDNA candidates encoding for a glucosyltransferase involved in saponin biosynthesis and facilitating the elucidation of the pathway in this medicinal plant.
    Matched MeSH terms: Saponins
  10. Alara OR, Abdurahman NH, Ukaegbu CI, Hassan Z, Kabbashi NA
    Data Brief, 2018 Dec;21:1686-1689.
    PMID: 30505901 DOI: 10.1016/j.dib.2018.10.159
    The tentative identification of bioactive compounds in the extract of Vernonia amygdalina leaf was carried out using positive ionization of Liquid chromatography-mass spectrometry quadrupole time of flight (LC-Q-TOF/MS). The positive ionization is associated with the presence of saponins, flavonoids, alkaloids, terpenoids, and glycosides. Tentative assignments of the secondary metabolites were performed by comparing the MS fragmentation patterns with Waters® UNIFY library which allows positive identification of the compounds based on the spectral match. All the metabolites compounds were estimated and presented in a BPI (Base peak intensity) plot. These data are the unpublished supplementary materials related to "Ethanolic extraction of bioactive compounds from V. amygdalina leaf using response surface methodology as an optimization tool" (Alara et al., 2018).
    Matched MeSH terms: Saponins
  11. Noor Hidayah Pungot, Nurul Auni Zainal Abidin, Nur Syafiqah Atikah Nazaharuddin
    Science Letters, 2020;14(2):103-109.
    MyJurnal
    Muntingia calabura has a high phytochemical content, especially the phenolic group that can act as antioxidant. In Malaysia country, this M. calabura also known as ‘kerukup siam’ or ‘Ceri Kampung’ and it belongs to Muntingiaceae family. This research was conducted to determine the potential of antioxidant activity application of cherry leaves (M. calabura) from various solvent extracts (methanol, ethyl acetate, and n-hexane). The phytochemical contents was screening by using the established standard procedure. Total phenolic content (TPC) was determined according to the Folin-Ciocalteau colorimetric method, while the antioxidant activity was carried out using 2,2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging assay. Phytochemical screening on the leaves part methanolic extracts revealed that the presence of various biochemicals like flavonoids, phenols, steroids, triterpenes, tannins, reducing sugars, and saponins except the alkaloids. Among the three extracts, the methanol leaf extract gave the highest content of phenolics (8.20 mg GAE/g extract). Analyses of antioxidant activity with DPPH method showed that cherry leaf methanolic extracts produced high antioxidant activity with IC50 value of 167.70 g/mL. The present study confirms that the presence of various phytochemicals which shows good antioxidant activity of M. calabura leaves. Therefore, it has the potential as a therapeutic antioxidant agent and can be used in cosmeceutical and food products.
    Matched MeSH terms: Saponins
  12. Jalil J, Attiq A, Hui CC, Yao LJ, Zakaria NA
    Inflammopharmacology, 2020 Oct;28(5):1195-1218.
    PMID: 32617790 DOI: 10.1007/s10787-020-00734-2
    The therapeutic efficacy of the contemporary anti-inflammatory drugs are well established; however, prolonged use of such can often lead to serious and life-threatening side effects. Natural product-based anti-inflammatory compounds with superior efficacy and minimum toxicity can serve as possible therapeutic alternatives in this scenario. Genus Uvaria is a part of Annonaceae family, while the majority of its species are widely distributed in tropical rain forest regions of South East Asia. Uvaria species have been used extensively used as traditional medicine for treating all sorts of inflammatory diseases including catarrhal inflammation, rheumatism, acute allergic reactions, hemorrhoids, inflammatory liver disease and inflamed joints. Phytochemical analysis of Uvaria species has revealed flavones, flavonoids, tannins, saponins, polyoxygenated cyclohexene and phenolic compounds as major phyto-constituents. This review is an attempt to highlight the anti-inflammatory activity of Uvaria species by conducting a critical appraisal of the published literature. The ethnopharmacological relevance of Uvaria species in the light of toxicological studies is also discussed herein. An extensive and relevant literature on anti-inflammatory activity of Uvaria species was collected from available books, journals and electronic databases including PubMed, ScienceDirect, Scopus, Proquest and Ovid. Extracts and isolates of Uvaria species exhibited significant anti-inflammatory activity through various mechanisms of action. 6,7-di-O-Methyl-baicalein, flexuvarol B, chrysin, (-)-zeylenol, 6-hydroxy-5,7-dimethoxy-flavone, and pinocembrin were the most potent anti-inflammatory compounds with comparable IC50 with positive controls. Therefore, it is suggested that further research should be carried out to determine the pharmacokinetics, pharmacodynamics and toxicity of these therapeutically significant compounds, to convert the pre-clinical results into clinical data for drug development and design.
    Matched MeSH terms: Saponins
  13. Cai D, Xu Y, Zhao F, Zhang Y, Duan H, Guo X
    PeerJ, 2021;9:e10702.
    PMID: 33520465 DOI: 10.7717/peerj.10702
    Background: Plant-growth-promoting rhizobacteria (PGPR) can promote plant growth and enhance plant tolerance to salt stress. Pseudomonas sp. strain M30-35 might confer abiotic stress tolerance to its host plants. We evaluated the effects of M30-35 inoculation on the growth and metabolite accumulation of Chenopodium quinoa Willd. during salt stress growth conditions.

    Methods: The effects of M30-35 on the growth of C. quinoa seedlings were tested under salt stress. Seedling growth parameters measured included chlorophyll content, root activity, levels of plant- phosphorus (P), and saponin content.

    Results: M30-35 increased biomass production and root activity compared to non-inoculated plants fertilized with rhizobia and plants grown under severe salt stress conditions. The photosynthetic pigment content of chlorophyll a and b were higher in M30-35-inoculated C. quinoa seedlings under high salt stress conditions compared to non-inoculated seedlings. The stability of P content was also maintained. The content of saponin, an important secondary metabolite in C. quinoa, was increased by the inoculation of M30-35 under 300 mM NaCl conditions.

    Conclusion: Inoculation of M30-35 rescues the growth diminution of C. quinoa seedlings under salt stress.

    Matched MeSH terms: Saponins
  14. Muniandy KV, Chung ELT, Jaapar MS, Hamdan MHM, Salleh A, Jesse FFA
    Toxicon, 2020 Jan 30;174:26-31.
    PMID: 31989927 DOI: 10.1016/j.toxicon.2019.12.158
    Brachiaria decumbens (signal grass) is a highly productive tropical grass that is widespread in some tropical countries due to its adaptation to a wide range of environments and soil types. However, a limiting factor for the use of this grass is its toxicity from steroidal saponins. Sporadic outbreaks of hepatogenous photosensitization in ruminants grazing on this grass have been reported. Sheep are more susceptible than other animal species and the young are more susceptible than adults. This review article will critically shed light on the B. decumbens profile, its toxic compounds, mechanisms, clinical responses, blood profile alterations, pathological changes, and acute phase responses related to signal grass intoxication. Further research is needed to integrate new findings on B. decumbens intoxication with previous preventive and therapeutic trials to minimize or remove its deleterious toxic effect.
    Matched MeSH terms: Saponins
  15. Firdoos S, Khan AU, Ali F
    Sains Malaysiana, 2017;46:1859-1863.
    The purpose of the present research was to evaluate the phytochemical content and analgesic effect of Caralluma edulis
    (Ce.Cr). Established methods were used for phytochemical analysis of plant. The anti-nociceptic activity of Ce.Cr was
    scrutinized using acetic acid-induced writhings, tail immersion and hot plate methods. Ce.Cr was tested positive for the
    presence of therapeutically active metabolites such as alkaloids, flavonoids, glycosides, phenol, tannins, terpenoids and
    saponins. Ce.Cr at the dose of 10, 30 and 100 mg/kg inhibited acetic acid-induced abdominal writhes and increase the
    latency time to thermal stimuli in both tail immersion and hot plate tests, similar to standard drug. These results showed
    that the ethanolic extract of Caralluma edulis possesses anti-nociceptive property.
    Matched MeSH terms: Saponins
  16. Ramasamy S, Chin SP, Sukumaran SD, Buckle MJ, Kiew LV, Chung LY
    PLoS One, 2015;10(5):e0126565.
    PMID: 25965066 DOI: 10.1371/journal.pone.0126565
    Bacopa monnieri has been used in Ayurvedic medicine to improve memory and cognition. The active constituent responsible for its pharmacological effects is bacoside A, a mixture of dammarane-type triterpenoid saponins containing sugar chains linked to a steroid aglycone skeleton. Triterpenoid saponins have been reported to be transformed in vivo to metabolites that give better biological activity and pharmacokinetic characteristics. Thus, the activities of the parent compounds (bacosides), aglycones (jujubogenin and pseudojujubogenin) and their derivatives (ebelin lactone and bacogenin A1) were compared using a combination of in silico and in vitro screening methods. The compounds were docked into 5-HT1A, 5-HT2A, D1, D2, M1 receptors and acetylcholinesterase (AChE) using AutoDock and their central nervous system (CNS) drug-like properties were determined using Discovery Studio molecular properties and ADMET descriptors. The compounds were screened in vitro using radioligand receptor binding and AChE inhibition assays. In silico studies showed that the parent bacosides were not able to dock into the chosen CNS targets and had poor molecular properties as a CNS drug. In contrast, the aglycones and their derivatives showed better binding affinity and good CNS drug-like properties, were well absorbed through the intestines and had good blood brain barrier (BBB) penetration. Among the compounds tested in vitro, ebelin lactone showed binding affinity towards M1 (Ki = 0.45 μM) and 5-HT2A (4.21 μM) receptors. Bacoside A and bacopaside X (9.06 μM) showed binding affinity towards the D1 receptor. None of the compounds showed any inhibitory activity against AChE. Since the stimulation of M1 and 5-HT2A receptors has been implicated in memory and cognition and ebelin lactone was shown to have the strongest binding energy, highest BBB penetration and binding affinity towards M1 and 5-HT2A receptors, we suggest that B. monnieri constituents may be transformed in vivo to the active form before exerting their pharmacological activity.
    Matched MeSH terms: Saponins/pharmacokinetics; Saponins/therapeutic use; Saponins/chemistry*
  17. Mukhopadhyay S, Mukherjee S, Hashim MA, Sen Gupta B
    Chemosphere, 2015 Jan;119:355-362.
    PMID: 25061940 DOI: 10.1016/j.chemosphere.2014.06.087
    Colloidal gas aphron dispersions (CGAs) can be described as a system of microbubbles suspended homogenously in a liquid matrix. This work examines the performance of CGAs in comparison to surfactant solutions for washing low levels of arsenic from an iron rich soil. Sodium Dodecyl Sulfate (SDS) and saponin, a biodegradable surfactant, obtained from Sapindus mukorossi or soapnut fruit were used for generating CGAs and solutions for soil washing. Column washing experiments were performed in down-flow and up flow modes at a soil pH of 5 and 6 using varying concentration of SDS and soapnut solutions as well as CGAs. Soapnut CGAs removed more than 70% arsenic while SDS CGAs removed up to 55% arsenic from the soil columns in the soil pH range of 5-6. CGAs and solutions showed comparable performances in all the cases. CGAs were more economical since it contains 35% of air by volume, thereby requiring less surfactant. Micellar solubilization and low pH of soapnut facilitated arsenic desorption from soil column. FT-IR analysis of effluent suggested that soapnut solution did not interact chemically with arsenic thereby facilitating the recovery of soapnut solution by precipitating the arsenic. Damage to soil was minimal arsenic confirmed by metal dissolution from soil surface and SEM micrograph.
    Matched MeSH terms: Saponins/chemistry
  18. Sattar MA, Gan EK, Loke SE, Mah KF, Wong WH
    J Ethnopharmacol, 1989 Apr;25(2):217-20.
    PMID: 2747256
    Matched MeSH terms: Saponins/pharmacology*
  19. Mukhopadhyay S, Mukherjee S, Hayyan A, Hayyan M, Hashim MA, Sen Gupta B
    J Contam Hydrol, 2016 Nov;194:17-23.
    PMID: 27697607 DOI: 10.1016/j.jconhyd.2016.09.007
    Deep eutectic solvents (DESs) are a class of green solvents analogous to ionic liquids, but less costly and easier to prepare. The objective of this study is to remove lead (Pb) from a contaminated soil by using polyol based DESs mixed with a natural surfactant saponin for the first time. The DESs used in this study were prepared by mixing a quaternary ammonium salt choline chloride with polyols e.g. glycerol and ethylene glycol. A natural surfactant saponin obtained from soapnut fruit pericarp, was mixed with DESs to boost their efficiency. The DESs on their own did not perform satisfactory due to higher pH; however, they improved the performance of soapnut by up to 100%. Pb removal from contaminated soil using mixture of 40% DES-Gly and 1% saponin and mixture of 10% DES-Gly and 2% saponin were above 72% XRD and SEM studies did not detect any major corrosion in the soil texture. The environmental friendliness of both DESs and saponin and their affordable costs merit thorough investigation of their potential as soil washing agents.
    Matched MeSH terms: Saponins/chemistry*
  20. Karimi E, Jaafar HZ, Ahmad S
    Molecules, 2011 May 27;16(6):4438-50.
    PMID: 21623314 DOI: 10.3390/molecules16064438
    A local herb, Kacip Fatimah, is famous amongst Malay women for its uses in parturition; however, its phytochemical contents have not been fully documented. Therefore, a study was performed to evaluate the phenolics, flavonoids, and total saponin contents, and antibacterial and antifungal properties of the leaf, stem and root of three varieties of Labisia pumila Benth. Total saponins were found to be higher in the leaves of all three varieties, compared to the roots and stems. Leaves of var. pumila exhibited significantly higher total saponin content than var. alata and lanceolata, with values of 56.4, 43.6 and 42.3 mg diosgenin equivalent/g dry weight, respectively. HPLC analyses of phenolics and flavonoids in all three varieties revealed the presence of gallic acid, caffeic acid, rutin, and myricetin in all plant parts. Higher levels of flavonoids (rutin, quercitin, kaempferol) were observed in var. pumila compared with alata and lanceolata, whereas higher accumulation of phenolics (gallic acid, pyrogallol) was recorded in var. alata, followed by pumila and lanceolata. Antibacterial activities of leaf, stem and root extracts of all varieties determined against both Gram positive (Micrococcus luteus, Bacillus subtilis B145, Bacillus cereus B43, Staphylococcus aureus S1431) and Gram negative (Enterobacter aerogenes, Klebsiella pneumonia K36, Escherichia coli E256, Pseudomonas aeruginosa PI96) pathogens showed that crude methanolic extracts are active against these bacteria at low concentrations, albeit with lower antibacterial activity compared to kanamycin used as the control. Antifungal activity of methanolic extracts of all plant parts against Fusarium sp., Candida sp. and Mucor using the agar diffusion disc exhibited moderate to appreciable antifungal activities compared to streptomycin used as positive control.
    Matched MeSH terms: Saponins/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links