Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Li G, Sng KS, Shu B, Wang YJ, Yao M, Cui XJ
    Eur J Pharmacol, 2023 Apr 15;945:175524.
    PMID: 36803629 DOI: 10.1016/j.ejphar.2023.175524
    Spinal cord injury (SCI) is a serious disabling condition that leads to the loss of motor, sensory, and excretory functions, seriously affecting the quality of life of patients and imposing a heavy burden on the patient's family and society. There is currently a lack of effective treatments for SCI. However, a large number of experimental studies have shown beneficial effects of tetramethylpyrazine (TMP). We performed a meta-analysis to systematically evaluate the effects of TMP on neurological and motor function recovery in rats with acute SCI. English (PubMed, Web of Science, and EMbase) and Chinese (CNKI, Wanfang, VIP, and CBM) databases were searched for literature related to TMP treatment in rats with SCI published until October 2022. Two researchers independently read the included studies, extracted the data, and evaluated their quality. A total of 29 studies were included, and a risk of bias assessment revealed that the methodological quality of the included studies was low. The results of the meta-analysis showed that the Basso, Beattie, and Bresnahan (BBB; n = 429, pooled mean difference [MD] = 3.44, 95% confidence interval [CI] = 2.67 to 4.22, p 
    Matched MeSH terms: Pyrazines/pharmacology; Pyrazines/therapeutic use
  2. Ku Madihah, K.Y., Zaibunnisa, A.H., Norashikin, S., Rozita, O., Misnawi, J.
    MyJurnal
    Central Composite Design (CCD) was used to optimize roasting conditions (temperature and
    time) for Arabica coffee beans. Current method of roasting was able to give good quality beans
    in term of flavour but the formation of acrylamide was not studied. In this study, optimization
    based on high quantity of flavour compounds (pyrazines) with low level of acrylamide resulted
    in roasting temperature of 167ºC for 22 minutes. The coffee beans produced using the optimized
    conditions have the following characteristics: flavour compounds: 2,3,5 trimethyl pyrazine (0.48
    mg/100 g), 2,3,5,6 tetramethyl pyrazine (0.42 mg/100 g), 2 methyl pyrazine (0.25 mg/100 g)
    and 2,5 dimethyl pyrazine (0.13 mg/100 g) and low concentration of acrylamide (0.11 mg/100
    g) with sensory evaluation of 7.5 from 10 points. This proposed roasting condition will be very
    useful for coffee manufacturers in order to produce high quality coffee beans.
    Matched MeSH terms: Pyrazines
  3. Moshikur RM, Ali MK, Wakabayashi R, Moniruzzaman M, Goto M
    Mol Pharm, 2021 08 02;18(8):3108-3115.
    PMID: 34250805 DOI: 10.1021/acs.molpharmaceut.1c00324
    Coronavirus disease 2019 (COVID-19) has spread across the world, and no specific antiviral drugs have yet been approved to combat this disease. Favipiravir (FAV) is an antiviral drug that is currently in clinical trials for use against COVID-19. However, the delivery of FAV is challenging because of its limited solubility, and its formulation is difficult with common organic solvents and water. To address these issues, four FAV ionic liquids (FAV-ILs) were synthesized as potent antiviral prodrugs and were fully characterized by nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT-IR) spectrometry, powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), and differential scanning calorimetry (DSC). The aqueous solubility and in vivo pharmacokinetic properties of the FAV-ILs were also evaluated. The FAV-ILs exhibited improved aqueous solubility by 78 to 125 orders of magnitude when compared with that of free FAV. Upon oral dosing in mice, the absolute bioavailability of the β-alanine ethyl ester FAV formulation was increased 1.9-fold compared with that of the control FAV formulation. The peak blood concentration, elimination half-life, and mean absorption time of FAV were also increased by 1.5-, 2.0-, and 1.5-fold, respectively, compared with the control. Furthermore, the FAV in the FAV-ILs exhibited significantly different biodistribution compared with the control FAV formulation. Interestingly, drug accumulation in the lungs and liver was improved 1.5-fold and 1.3-fold, respectively, compared with the control FAV formulation. These results indicate that the use of ILs exhibits potential as a simple, scalable strategy to improve the solubility and oral absorption of hydrophobic drugs, such as FAV.
    Matched MeSH terms: Pyrazines/administration & dosage*; Pyrazines/chemical synthesis; Pyrazines/pharmacokinetics; Pyrazines/chemistry
  4. Lasekan O
    Molecules, 2013 Sep 25;18(10):11809-23.
    PMID: 24071987 DOI: 10.3390/molecules181011809
    The influence of human salivary enzymes on palm wines' odorant concentrations were investigated by the application of aroma extracts dilution analysis (AEDA) and by the calculation of odour activity values (OAVs), respectively. The odorants were quantified by means of stable isotope dilution assays (SIDA), and the degradation profiles of odorants by human saliva were also studied. Results revealed 46 odour-active compounds in the flavour dilution (FD) factor range of 4-256, and all were subsequently identified. Of the 46 odorants, 41 were identified in the Elaeis guineensis wine, 36 in Raphia hookeri wine and 29 in Borassus flabellifer wine. Among the odorants, the highest FD-factors were obtained from acetoin, 2-acetyl-1-pyrroline and 3-isobutyl-2-methoxypyrazine. Among the 13 potent odorants identified, five aroma compounds are reported here as important contributors to palm wine aroma, namely 3-isobutyl-2-methoxy-pyrazine, acetoin, 2-acetyl-1-pyrroline, 3-methylbutylacetate and ethyl hexanoate. Meanwhile, salivary enzymic degradation of odorants was more pronounced among the aldehydes, esters and thiols.
    Matched MeSH terms: Pyrazines/chemistry
  5. Kow CS, Ramachandram DS, Hasan SS
    Int Immunopharmacol, 2022 Feb;103:108455.
    PMID: 34959188 DOI: 10.1016/j.intimp.2021.108455
    Matched MeSH terms: Pyrazines/therapeutic use*
  6. Taha M, Ismail NH, Imran S, Rahim F, Wadood A, Al Muqarrabun LM, et al.
    Bioorg Chem, 2016 10;68:80-9.
    PMID: 27474803 DOI: 10.1016/j.bioorg.2016.07.010
    Thymidine phosphorylase (TP) is up regulated in wide variety of solid tumors and therefore presents a remarkable target for drug discovery in cancer. A novel class of extremely potent TPase inhibitors based on benzopyrazine (1-28) has been developed and evaluated against thymidine phosphorylase enzyme. Out of these twenty-eight analogs eleven (11) compounds 1, 4, 14, 15, 16, 17, 18, 19, 20, 24 and 28 showed potent thymidine phosphorylase inhibitory potentials with IC50 values ranged between 3.20±0.30 and 37.60±1.15μM when compared with the standard 7-Deazaxanthine (IC50=38.68±4.42μM). Structure-activity relationship was established and molecular docking studies were performed to determine the binding interactions of these newly synthesized compounds. Current studies have revealed that these compounds established stronger hydrogen bonding networks with active site residues as compare to the standard compound 7DX.
    Matched MeSH terms: Pyrazines/chemical synthesis; Pyrazines/pharmacology*; Pyrazines/chemistry
  7. Farah, D.M.H., Zaibunnisa, A.H., Misnawi
    MyJurnal
    Roasting is an important process that contribute to formation of flavour compounds in cocoa beans. Pyrazines, a by-product of Maillard reaction is one of the character impact compounds that contribute to unique cocoa flavour. Unfortunately during roasting, carcinogenic acrylamide are also produced through Maillard reaction. Therefore, this study was focussed on optimising the roasting conditions using Central Composite Design (CCD) to produce superior quality cocoa beans with high concentration of pyrazines and low concentration of acrylamide. The roasting conditions used were temperatures in the range of 110⁰C to 160⁰C and time ranging from 15 min to 40 min. Roasting conditions significantly (p
    Matched MeSH terms: Pyrazines
  8. Teoh SL, Lim YH, Lai NM, Lee SWH
    Front Microbiol, 2020;11:1857.
    PMID: 32849448 DOI: 10.3389/fmicb.2020.01857
    The outbreak of a novel coronavirus (SARS-CoV-2) in Wuhan, China in December 2019 has now become a pandemic with no approved therapeutic agent. At the moment, the genomic structure, characteristics, and pathogenic mechanisms of SARS-CoV-2 have been reported. Based upon this information, several drugs including the directly acting antivirals have been proposed to treat people with coronavirus disease 2019 (COVID-19). This rapid review aims to describe the directly acting antivirals that have been examined for use in the management of COVID-19. Searches were conducted in three electronic databases, supplemented with a search on arXiv, bioRxiv, medRxiv, ChinaXiv, ClinicalTrials.gov, and Chinese Clinical Trial Registry for studies examining the use of antivirals in COVID-19 to identify for case reports, case series, observational studies, and randomized controlled studies describing the use of antivirals in COVID-19. Data were extracted independently and presented narratively. A total of 98 studies were included, comprising of 38 published studies and 60 registered clinical trials. These drugs include the broad spectrum antivirals such as umifenovir, protease inhibitors such as lopinavir/ritonavir as well as the RNA-dependent RNA polymerase inhibitors, remdesivir, and favipiravir. Other drugs that have been used include the nucleosidase inhibitors and polymerase acidic endonuclease inhibitors which are currently approved for prevention of influenza infections. While some of the drugs appear promising in small case series and reports, more clinical trials currently in progress are required to provide higher quality evidence.
    Matched MeSH terms: Pyrazines
  9. Lasekan O, Teoh LS
    BMC Chem, 2019 Dec;13(1):133.
    PMID: 31891159 DOI: 10.1186/s13065-019-0650-3
    Background: The aroma chemistry and the contribution of the aroma compounds to the anti-oxidative properties of roasted yam have yet to be characterized. The growing popularity of roasted yam in regions where they are being consumed calls for a concerted effort to elucidate their aroma chemistry as well as their anti-oxidative properties.

    Results: The aroma compounds in roasted white yam (Dioscorea rotundata) were isolated and identified using static headspace-gas chromatography-mass spectrometry (SH-GC-MS) and gas chromatography-olfactometry (GC-O). In addition, the anti-oxidative activities of the most abundant volatile heterocyclic compounds (2 pyrroles, 4 furans and 3 pyrazines) were evaluated on their inhibitory effect towards the oxidation of hexanal for a period of 30 days. Twenty-nine aroma-active compounds with a flavour dilution (FD) factor range of 2-256 and an array of odour notes were obtained. Among them, the highest odour activities (FD ≥ 128) factors were determined for 2-acetyl furan and 2-acetylpyrrole. Other compounds with significant FD factors ≥ 32 were; 2-methylpyrazine, ethyl furfural, and 5-hydroxy methyl furfural.

    Conclusion: Results of the anti-oxidative activity showed that the pyrroles exhibited the greatest antioxidant activity among all the tested heterocyclic compounds. This was followed by the furans and the pyrazines which had the least antioxidant activity.

    Matched MeSH terms: Pyrazines
  10. Wan Aida, W.M., Ho, C.W., Maskat, M.Y., Osman, H.
    MyJurnal
    Sensory attributes of four different palm sugars were related to gas chromatography/mass spectrometry (GC/MS) analysis using partial least squares regression (PLS). The sweet caramel and burnt-like sensory attributes were strongly associated with 2-furfural and 2-furan methanol volatile compounds. The sensory scores for roasty and nutty were also associated with the GC/MS ratings for roasty and nutty-like aroma by its highest scores obtained from 2-ethyl-5-methyl pyrazine, 2,5-dimethyl pyrazine and 2,3-dimethyl pyrazine volatile compounds along the PC1 dimension. PLS analysis did not show correlation for the character impact compound furaneol, 2-ethyl-3,5-dimethyl pyrazine (EDMP) and 2,3-diethyl-5-methyl pyrazine (DEMP), which are perceived to be responsible for the sweet caramel-like and roasty/nutty attributes of palm sugars, respectively. This lack of relationship could partially be explained by covariance among the sensory ratings for the samples.
    Matched MeSH terms: Pyrazines
  11. Zhan SZ, Li M, Zheng J, Wang QJ, Ng SW, Li D
    Inorg Chem, 2017 Nov 06;56(21):13446-13455.
    PMID: 29023107 DOI: 10.1021/acs.inorgchem.7b02144
    Six daughter complexes based on two-dimensional (2-D) luminescent Cu4I4-Cu3Pz3(Pz = pyrazolate) coordination networks, which exhibit an uncommon Cu4I4L3L' (L = pyridine; L' = acetonitrile, pyridine, pyrazine, 1,4-diazabicyclo[2.2.2]octane, triphenylphosphine, none) local configuration, were prepared through a postsynthetic modification method starting from a parent complex (L' = NH3). This work has successfully implemented the single-site substitution of Cu4I4-based coordination frameworks, which have rarely been reported for isolated Cu4I4-type compounds, by taking advantage of the solvent-assisted ligand substitution strategy recently developed in metal-organic framework (MOF) chemistry. Such a procedure not only resulted in the variation of local geometry in the Cu4I4units but also led to interlayer network displacement and entanglement. Particularly, an interesting topological transformation (from 2-D to 2-D → 3-D interpenetration) occurred when linear bidentate linkers (e.g., pyrazine and 1,4-diazabicyclo[2.2.2]octane) are inserted between the 2-D layers. Moreover, the variation in the L' sites can effectively tune the emission colors, ranging from green to orange (λemmax540-605 nm at room temperature). The photoluminescence origins are tentatively assigned to be a mixture of3MLCT and3XLCT, different from that of the well-studied isolated Cu4I4-type complexes.
    Matched MeSH terms: Pyrazines
  12. Tan PY, Tan CP, Abas F, Ho CW, Mustapha WA
    Molecules, 2013 Jun 10;18(6):6792-803.
    PMID: 23752466 DOI: 10.3390/molecules18066792
    Palm sugar-like flavouring (PSLF) is a type of flavour product that is formed by heating amino acids and sugar under specific heating conditions. Unfortunately, PSLF has a salty taste and contains high amounts of acrylamide. Hence, the objective of this research was to reduce saltiness and acrylamide without negatively affecting the aroma properties of PSLF. A decrease in the sodium phosphate (NaHPO₄) buffer concentration from 0.20 to 0.02 M was found to reduce sodium to approximately 15% of the level found in original PSLF. A further decrease (~25%) in the sodium content was achieved by removing monobasic sodium phosphate (NaH₂PO₄) from the buffer system. Meanwhile, the addition of CaCl₂ at 20-40 mg/L reduced the acrylamide content in PSLF by as much as 58%. A CaCl₂ concentration of 20 mg/mL was most favourable as it most efficiently suppressed acrylamide formation while providing an acceptably high flavour yield in PSLF. In view of the high acrylamide content in PSLF, additional work is necessary to further reduce the amount of acrylamide by controlling the asparagine concentration in the precursor mixture.
    Matched MeSH terms: Pyrazines/chemistry
  13. Jinap S, Ikrawan Y, Bakar J, Saari N, Lioe HN
    J Food Sci, 2008 Sep;73(7):H141-7.
    PMID: 18803708 DOI: 10.1111/j.1750-3841.2008.00858.x
    Cocoa-specific aroma precursors and methylpyrazines in underfermented cocoa beans obtained from fermentation induced by indigenous carboxypeptidase have been investigated. Fermentation conditions and cocoa bean components were analyzed during 0 to 3 d of fermentation. Underfermented cocoa beans were characterized as having hydrophilic peptides and free hydrophobic amino acids much higher than unfermented ones. These 2 key components of cocoa aroma precursors may be produced from the breakdown of proteins and polypeptides by endogenous carboxypeptidase during the fermentation process. The enzyme was activated during fermentation. Polypeptides of 47, 31, and 19 kDa were observed in the samples throughout the 3-d fermentation period; however, only the first 2 polypeptides were remarkably reduced during fermentation. Since the 1st day of fermentation, underfermented cocoa beans contained methylpyrazines, a dominant group of cocoa-specific aroma. This might be due to microbial activities during fermentation, observed through a decrease of pH value and an increase of temperature of cocoa beans. The concentration of tetramethylpyrazines was significantly increased during the 3 d of fermentation. This may increase the cocoa-specific flavor to the beans.
    Matched MeSH terms: Pyrazines/analysis*
  14. Law WY, Asaruddin MR, Bhawani SA, Mohamad S
    BMC Res Notes, 2020 Nov 11;13(1):527.
    PMID: 33176880 DOI: 10.1186/s13104-020-05379-6
    OBJECTIVES: The aim of this study was to use Ligand-based pharmacophore modelling approach for four established antiviral drugs, namely remdesivir, lopinavir, ritonavir and hydroxychloroquine for COVID-19 inhibitors as training sets. In this study Twenty vanillin derivatives together with monolaurin and tetrodotoxin were used as test sets to evaluate as potential SARS-CoV-2 inhibitors. The Structure-based pharmacophore modelling approach was also performed using 5RE6, 5REX and 5RFZ in order to analyse the binding site and ligand-protein complex interactions.

    RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.

    Matched MeSH terms: Pyrazines/pharmacology; Pyrazines/chemistry
  15. Ali SA, Teow SY, Omar TC, Khoo AS, Choon TS, Yusoff NM
    PLoS One, 2016;11(1):e0145986.
    PMID: 26741963 DOI: 10.1371/journal.pone.0145986
    There remains a need for newer therapeutic approaches to combat HIV/AIDS. Viral capsid protein p24 plays important roles in HIV pathogenesis. Peptides and small molecule inhibitors targeting p24 have shown to inhibit virus replication in treated cell. High specificity and biological stability of monoclonal antibodies (mAbs) make them an attractive contender for in vivo treatments. However, mAbs do not enter into cells, thus are restricted to target surface molecules. This also makes targeting intracellular HIV-1 p24 a challenge. A mAb specific to p24 that can internalize into the HIV-infected cells is hypothesized to inhibit the virus replication. We selected a mAb that has previously shown to inhibit p24 polymerization in an in vitro assay and chemically conjugated it with cell penetrating peptides (CPP) to generate cell internalizing anti-p24 mAbs. Out of 8 CPPs tested, κFGF-MTS -conjugated mAbs internalized T cells most efficiently. At nontoxic concentration, the κFGF-MTS-anti-p24-mAbs reduced the HIV-1 replication up to 73 and 49% in T-lymphocyte and PBMCs respectively. Marked inhibition of HIV-1 replication in relevant cells by κFGF-MTS-anti-p24-mAbs represents a viable strategy to target HIV proteins present inside the cells.
    Matched MeSH terms: Pyrazines
  16. Bukhari SNA, Alotaibi NH, Ahmad W, Alharbi KS, Abdelgawad MA, Al-Sanea MM, et al.
    Med Chem, 2020 Sep 05.
    PMID: 32888274 DOI: 10.2174/1573406416666200905125038
    BACKGROUND: Ligustrazine and chalcones have been reported previously for various biological activities including anticancer effects.

    OBJECTIVES: Based on the multitargeted biological activities approach of ligustrazine based chalcones, in current study 18 synthetic ligustrazine-containing α, β-unsaturated carbonyl-based 1, 3-Diphenyl-2-propen-1-one derivatives were evaluated for their inhibitory effects on growth of five different types of cancer cells.

    METHODS: All compounds were evaluated for anticancer effects on various cancer cell lines by propidium iodide fluorescence assay and various other assays were performed for mechanistic studies.

    RESULTS: Majority of compounds exhibited strong inhibition of cancer cells especially synthetic compounds 4a and 4b bearing 1-Pyridin-3-yl-ethanone as a ketone moiety in main structural backbone were found most powerful inhibitors of cancer cell growth. Most active 9 compounds among whole series were selected for further studies related to different cancer targets including EGFR TK kinases, tubulin polymerization, KAF and BRAFV600E.

    CONCLUSION: Synthetic derivatives including 4a-b and 5a-b showed multitarget approach and showed strong inhibitory effects on EGFR, FAK and BRAF while three compounds including 3e bearing methoxy substitution, 4a and 4b with 1- pyridin-3-yl-ethanone moiety showed the inhibition of tubulin polymerization.

    Matched MeSH terms: Pyrazines
  17. Khan Y, Pandy V
    Front Pharmacol, 2016;7:352.
    PMID: 27729866
    Phytotherapy is an emerging field successfully utilized to treat various chronic diseases including alcohol dependence. In the present study, we examined the effect of the standardized methanolic extract of Morinda citrifolia Linn. unripe fruit (MMC), on compulsive ethanol-seeking behavior using the mouse conditioned place preference (CPP) test. CPP was established by injections of ethanol (2 g/kg, i.p.) in a 12-day conditioning schedule in mice. The effect of MMC and the reference drug, acamprosate (ACAM), on the reinforcing properties of ethanol in mice was studied by the oral administration of MMC (1, 3, and 5 g/kg) and ACAM (300 mg/kg) 60 min prior to the final CPP test postconditioning. Furthermore, CPPs weakened with repeated testing in the absence of ethanol over the next 12 days (extinction), during which the treatment groups received MMC (1, 3, and 5 g/kg, p.o.) or ACAM (300 mg/kg, p.o.). Finally, a priming injection of a low dose of ethanol (0.4 g/kg, i.p.) in the home cage (Reinstatement) was sufficient to reinstate CPPs, an effect that was challenged by the administration of MMC or ACAM. MMC (3 and 5 g/kg, p.o.) and ACAM (300 mg/kg, p.o.) significantly reversed the establishment of ethanol-induced CPPs and effectively facilitated the extinction of ethanol CPP. In light of these findings, it has been suggested that M. citrifolia unripe fruit could be utilized for novel drug development to combat alcohol dependence.
    Matched MeSH terms: Pyrazines
  18. Anwar A, Minhaz A, Hussain SS, Anwar A, Simjee SU, Ishaq M, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2019 Jan 05;206:135-140.
    PMID: 30096697 DOI: 10.1016/j.saa.2018.07.099
    Gold nanoparticles (AuNPs) stabilized by new cationic 1‑(3‑(acetylthio)propyl)pyrazin‑1‑ium ligand (PPTA) were synthesized. AuNPs stabilized by PPTA (PPTA-AuNPs) were found to be spherical and polydispersed with the average size of 60 nm. Human neuroblastoma (SHSY-5Y) cells permeability of PPTA-AuNPs was found to be a key feature to study the intracellular quenching of Fe(III) proliferative activity. In vitro MTT assay revealed non-cytotoxicity of PPTA and PPTA-AuNPs at 100 μM concentration, while treatment of 100 μM of Fe(III) with SHSY-5Y cells resulted into higher cells viability. Contrary, a mixture of 1:1 Fe(III) with PPTA-AuNPs showed no change in the viability of cells at same concentration which suggests the intracellular complexation and recognition of Fe(III) by PPTA-AuNPs. AFM morphological analysis of SHSY-5Y cells also supported the MTT assay results, and it is safe to conclude that PPTA-AuNPs can be used as Fe(III) probes in living cells. In addition, Fe(III) caused a significant decrease in the absorbance of surface plasmon resonance (SPR) band of PPTA-AuNPs in a wide range of concentration and pH, with limit of detection 4.3 μM. Moreover, the specific response of PPTA-AuNPs towards Fe(III) was unaffected by the interference of other metals and components of real samples of tap water.
    Matched MeSH terms: Pyrazines/chemistry*
  19. Aravind SR, Ismail SB, Balamurugan R, Gupta JB, Wadhwa T, Loh SM, et al.
    Curr Med Res Opin, 2012 Aug;28(8):1289-96.
    PMID: 22738801 DOI: 10.1185/03007995.2012.707119
    To compare the incidence of symptomatic hypoglycemia between sitagliptin and sulfonylurea in Muslim patients with type 2 diabetes who fasted during Ramadan.
    Matched MeSH terms: Pyrazines/adverse effects*; Pyrazines/therapeutic use
  20. Kaur RJ, Charan J, Dutta S, Sharma P, Bhardwaj P, Sharma P, et al.
    Infect Drug Resist, 2020;13:4427-4438.
    PMID: 33364790 DOI: 10.2147/IDR.S287934
    Background: COVID-19 caused by SARS-CoV-2 virus emerged as an unprecedented challenge to discover effective drugs for its prevention and cure. Hyperinflammation-induced lung damage is one of the poor prognostic indicators causing a higher rate of morbidity and mortality of COVID-19 patients. Favipiravir, an antiviral drug, is being used for COVID-19 treatment, and we currently have limited information regarding its efficacy and safety. Thus, the present study was undertaken to evaluate the adverse drug events (ADEs) reported in the WHO pharmacovigilance database.

    Methods: This study analyzed all suspected ADEs related to favipiravir reported from 2015. The reports were analyzed based on age, gender, and seriousness of ADEs at the System Organ Classification (SOC) level and the individual Preferred Term (PT) level.

    Results: This study is based on 194 ADEs reported from 93 patients. Most frequent ADEs suspected to be caused by the favipiravir included increased hepatic enzymes, nausea and vomiting, tachycardia, and diarrhea. Severe and fatal ADEs occurred more frequently in men and those over the age of 64 years. Blood and lymphatic disorders, cardiac disorders, hepatobiliary disorders, injury poisoning, and procedural complications were more common manifestations of severe ADEs.

    Conclusion: This study revealed that favipiravir appears to be a relatively safe drug. An undiscovered anti-inflammatory activity of favipiravir may explain the improvement in critically ill patients and reduce inflammatory markers. Currently, the data is based on very few patients. A more detailed assessment of the uncommon ADEs needs to be analyzed when more information will be available.

    Matched MeSH terms: Pyrazines
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links