Displaying publications 1 - 20 of 24 in total

Abstract:
Sort:
  1. Seow LJ, Beh HK, Umar MI, Sadikun A, Asmawi MZ
    Int Immunopharmacol, 2014 Nov;23(1):186-91.
    PMID: 25194675 DOI: 10.1016/j.intimp.2014.08.020
    Gynura segetum, family Compositae, is a cultivated species and can be found growing in the tropical regions of Indonesia and Malaysia. The plant is known for its use for the treatment of cancer, inflammation, diabetes, hypertension and skin afflictions. In the current study, in vivo anti-inflammatory effect of the methanol extract G. segetum leaf and its antioxidant effect in vitro have been investigated for the first time. The in vitro antioxidant activities of the methanol extract were measured using common methods including total phenolic content; total flavonoid content; scavenging of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and β-carotene bleaching assays. The in vivo anti-inflammatory activities were tested using the cotton pellet implanted animal model. The measurement of pro-inflammatory cytokine (TNF-α and IL-1) levels in the blood samples of the rats was carried out by using ELISA kits. The inhibitory activity on cyclooxygenase (COX) enzyme of methanol extract was also evaluated. The methanol extract exhibited good antioxidant activity which is associated with their total phenolic and flavonoid contents. Methanol extract strongly inhibited the granuloma tissue formation in rats and the anti-inflammatory potential was mediated through the inhibition of pro-inflammatory cytokines and COX-2 enzyme activities. Taken together, the present study suggests that G. segetum's leaf is a natural source of antioxidants and has potential therapeutic benefits against chronic inflammation.
  2. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH
    Int Immunopharmacol, 2012 Apr;12(4):594-602.
    PMID: 22330084 DOI: 10.1016/j.intimp.2012.01.014
    Interleukin-6 is one of the factors affecting sensitivity to cytotoxic agents. Therefore, the current study was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition at a dose-dependent manner as determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,Sdiphenyltetrazolium bromide) reduction assay. Both laser scanning confocal microscopy and TUNEL assay showed typical apoptotic features in treated cells. The studies conducted seems to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. Our results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells. In contrast, HeLa and Caov-3 cells were still sensitive to cisplatin and zerumbone, even in the presence of exogenous IL-6. However, membrane-bound IL-6 receptor is still intact after zerumbone treatment as demonstrated using an immune-fluorescence technique. This study concludes that the compound, zerumbone inhibits both cancer cell growth through the induction of apoptosis, arrests cell cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells. Therefore, zerumbone is a potential candidate as a useful chemotherapeutic agent in treating both cervical and ovarian cancers in future.
  3. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al.
    Int Immunopharmacol, 2012 Apr;12(4):657-65.
    PMID: 22306767 DOI: 10.1016/j.intimp.2012.01.009
    The increasing prevalence of neurodegenerative diseases has prompted investigation into innovative therapeutics over the last two decades. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the therapeutic choices to control and suppress the symptoms of neurodegenerative diseases. However, NSAIDs-associated gastropathy has hampered their long term usage despite their clinical advancement. On the natural end of the treatment spectrum, our group has shown that cardamonin (2',4'-dihydroxy-6'-methoxychalcone) isolated from Alpinia rafflesiana exerts potential anti-inflammatory activity in activated macrophages. Therefore, we further explored the anti-inflammatory property of cardamonin as well as its underlying mechanism of action in IFN-γ/LPS-stimulated microglial cells. In this investigation, cardamonin shows promising anti-inflammatory activity in microglial cell line BV2 by inhibiting the secretion of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The inhibition of NO and PGE(2) by cardamonin are resulted from the reduced expression of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), respectively. Meanwhile the suppressive effects of cardamonin on TNF-α, IL-1β and IL-6 were demonstrated at both protein and mRNA levels, thus indicating the interference of upstream signal transduction pathway. Our results also validate that cardamonin interrupts nuclear factor-kappa B (NF-κB) signalling pathway via attenuation of NF-κB DNA binding activity. Interestingly, cardamonin also showed a consistent suppressive effect on the cell surface expression of CD14. Taken together, our experimental data provide mechanistic insights for the anti-inflammatory actions of cardamonin in BV2 and thus suggest a possible therapeutic application of cardamonin for targeting neuroinflammatory disorders.
  4. Liew CY, Lam KW, Kim MK, Harith HH, Tham CL, Cheah YK, et al.
    Int Immunopharmacol, 2011 Jan;11(1):85-95.
    PMID: 21035434 DOI: 10.1016/j.intimp.2010.10.011
    We previously showed that 3-(2-hydroxyphenyl)-1-(5-methyl-furan-2-y-l)propenone (HMP), suppressed the synthesis of various proinflammatory mediators. In this study, HMP showed a dose-dependent inhibition of NO synthesis in the RAW 264.7 murine macrophage line. The inhibition of NO synthesis was related to inhibition of p38 phosphorylation and kinase activity that led to significant inhibition of phosphorylation of ATF-2. This effect in turn caused inhibition of AP-1-DNA binding which partially explains the inhibitory effect upon the synthesis of iNOS. HMP had no effect upon phosphorylation of JNK, ERK1/2 and STAT-1. Kinase activity of JNK and ERK1/2 was also not affected by HMP as determined by levels of phosphorylated c-jun and phosphorylated elk-1. Furthermore HMP failed to block phosphorylation of IκBα, and subsequent nuclear translocation and DNA-binding activity of p65 NF-κB in IFN-γ/LPS-induced RAW 264.7 cells. Molecular docking experiments confirmed that HMP fits well in the highly conserved hydrophobic pocket of p38 MAP kinase. We conclude that the synthetic HMP is a chalcone analogue that selectively inhibits the p38/ATF-2 and AP-1 signaling pathways in the NO synthesis by the macrophage RAW 264.7.
  5. Ooi YY, Ramasamy R, Rahmat Z, Subramaiam H, Tan SW, Abdullah M, et al.
    Int Immunopharmacol, 2010 Dec;10(12):1532-40.
    PMID: 20850581 DOI: 10.1016/j.intimp.2010.09.001
    The immunoregulatory properties of mesenchymal stem cells (MSC) have been demonstrated on a wide range of cells. Here, we describe the modulatory effects of mouse bone marrow-derived MSC on BV2 microglia proliferation rate, nitric oxide (NO) production and CD40 expression. Mouse bone marrow MSC were co-cultured with BV2 cells at various seeding density ratios and activated with lipopolysaccharide (LPS). We show that MSC exert an anti-proliferative effect on microglia and are potent producers of NO when stimulated by soluble factors released by LPS-activated BV2. MSC suppressed proliferation of both untreated and LPS-treated microglia in a dose-dependent manner, significantly reducing BV2 proliferation at seeding density ratios of 1:0.2 and 1:0.1 (p
  6. Le CF, Kailaivasan TH, Chow SC, Abdullah Z, Ling SK, Fang CM
    Int Immunopharmacol, 2017 Mar;44:203-210.
    PMID: 28119186 DOI: 10.1016/j.intimp.2017.01.013
    Clinacanthus nutans (Burm. f.) Lindau is a traditional medicinal plant belonging to the Acanthaceae family. Its therapeutic potentials have been increasingly documented particularly the antiviral activity against Herpes Simplex Virus (HSV), anti-cancer, anti-oxidant, anti-inflammatory and immunomodulatory activities. However, majority of these studies used crude or fractionated extracts and not much is known about individual compounds from these extracts and their biological activities. In the present study, we have isolated four compounds (CN1, CN2, CN3 and CN4) from the hexane fractions of C. nutans leaves. Using NMR spectroscopic analysis, these compounds were identified to be shaftoside (CN1), stigmasterol (CN2), β-sitosterol (CN3) and a triterpenoid lupeol (CN4). To determine the immunosuppressive potential of these compounds, their effects on mitogens induced T and B lymphocyte proliferation and the secretion of helper T cell cytokines were examined. Among the four compounds, stigmasterol (CN2) and β-sitosterol (CN3) were shown to readily inhibit T cell proliferation mediated by Concanavalin A (ConA). However, only β-sitosterol (CN3) and not stigmasterol (CN2) blocks the secretion of T helper 2 (Th2) cytokines (IL-4 and IL-10). Both compounds have no effect on the secretion of Th1 cytokines (IL-2 and IFN-γ), suggesting that β-sitosterol treatment selectively suppresses Th2 activity and promotes a Th1 bias. CN3 was also found to significantly reduce the proliferation of both T helper cells (CD4(+)CD25(+)) and cytotoxic T cells (CD8(+)CD25(+)) following T cell activation induced by ConA. These results suggested that phytosterols isolated from C. nutans possess immunomodulatory effects with potential development as immunotherapeutics.
  7. Haque MA, Jantan I, Harikrishnan H
    Int Immunopharmacol, 2018 Feb;55:312-322.
    PMID: 29310107 DOI: 10.1016/j.intimp.2018.01.001
    Zerumbone (ZER), isolated mainly from the Zingiber zerumbet (Z. zerumbet) rhizomes was found to be effective against numerous inflammatory and immune disorders, however, the molecular and biochemical mechanisms underlying its anti-inflammatory and immunosuppressive properties have not been well studied. This study was carried out to examine the profound effects of ZER on inflammatory mediated MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways in LPS-stimulated U937 human macrophages. ZER significantly suppressed the up-regulation pro-inflammatory mediators, TNF-α, IL-1β, PGE2, and COX-2 protein in LPS-induced human macrophages. Moreover, ZER significantly downregulated the phosphorylation of NF-κB (p65), IκBα, and IKKα/β as well as restored the degradation of IκBα. ZER correspondingly showed remarkable attenuation of the expression of Akt, JNK, ERK, and p38 MAPKs phosphorylation in a concentration-dependent manner. ZER also diminished the expression of upstream signaling molecules TLR4 and MyD88, which are prerequisite for the NF-κB, MAPK and PI3K-Akt activation. Additionally, quantification of relative gene expression of TNF-α, IL-1β, and COX-2 indicated that, at a higher dose (50μM), ZER significantly downregulated the elevated mRNA transcription levels of the stated pro-inflammatory markers in LPS-stimulated U937 macrophages. The strong suppressive effects of ZER on the activation of inflammatory markers in the macrophages via MyD88-dependent NF-κB/MAPK/PI3K-Akt signaling pathways suggest that ZER can be a preventive and potent therapeutic candidate for the management of various inflammatory-mediated immune disorders.
  8. Jantan I, Haque MA, Ilangkovan M, Arshad L
    Int Immunopharmacol, 2019 Aug;73:552-559.
    PMID: 31177081 DOI: 10.1016/j.intimp.2019.05.035
    Zerumbone exhibited various biological properties including in vitro immunosuppressive effects. However, its modulatory activity on the immune responses in experimental animal model is largely unknown. This investigation was conducted to explore the effects of daily treatment of zerumbone (25, 50, and 100 mg/kg) isolated from Zingiber zerumbet rhizomes for 14 days on various cellular and humoral immune responses in Balb/C mice. For measurement of adaptive immunity, sheep red blood cells (sRBC) were used to immunize the mice on day 0 and orally fed with similar doses of zerumbone for 14 days. The effects of zerumbone on phagocytosis, nitric oxide (NO) release, myeloperoxidase (MPO) activity, proliferation of T and B cells, lymphocyte phenotyping, cytokines release in serum by activated T cells, delayed type hypersensitivity (DTH) and immunoglobulins production (IgG and IgM) were investigated. Zerumbone downregulated the engulfment of E. coli by peritoneal macrophages and the release of NO and MPO in a concentration-dependent manner. Zerumbone showed significant and concentration-dependent suppression of T and B lymphocytes proliferation and inhibition of the Th1 and Th2 cytokines release. At higher concentrations of zerumbone, the % expression of CD4+ and CD8+ in splenocytes was significantly inhibited. Zerumbone also concentration-dependently demonstrated strong suppression on sRBC-triggered swelling of mice paw in DTH. Substantial suppression of anti-sRBC immunoglobulins antibody titer was noted in immunized and zerumbone-treated mice in a concentration-dependent manner. The potent suppressive effects of zerumbone on the immune responses suggest that zerumbone can be a potential candidate for development of immunosuppressive agent.
  9. Pandurangan AK, Mohebali N, Mohd Esa N, Looi CY, Ismail S, Saadatdoust Z
    Int Immunopharmacol, 2015 Oct;28(2):1034-43.
    PMID: 26319951 DOI: 10.1016/j.intimp.2015.08.019
    Inflammatory bowel diseases (IBD) encompass at least two forms of intestinal inflammation: Crohn's disease and ulcerative colitis (UC). Both conditions are chronic and inflammatory disorders in the gastrointestinal tract, with an increasing prevalence being associated with the industrialization of nations and in developing countries. Patients with these disorders are 10 to 20 times more likely to develop cancer of the colon. The aim of this study was to characterize the effects of a naturally occurring polyphenol, gallic acid (GA), in an experimental murine model of UC. A significant blunting of weight loss and clinical symptoms was observed in dextran sodium sulfate (DSS)-exposed, GA-treated mice compared with control mice. This effect was associated with a remarkable amelioration of the disruption of the colonic architecture, a significant reduction in colonic myeloperoxidase (MPO) activity, and a decrease in the expression of inflammatory mediators, such as inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, and pro-inflammatory cytokines. In addition, GA reduced the activation and nuclear accumulation of p-STAT3(Y705), preventing the degradation of the inhibitory protein IκB and inhibiting of the nuclear translocation of p65-NF-κB in colonic mucosa. These findings suggest that GA exerts potentially clinically useful anti-inflammatory effects mediated through the suppression of p65-NF-κB and IL-6/p-STAT3(Y705) activation.
  10. Ali H, Musharraf SG, Iqbal N, Adhikari A, Abdalla OM, Ahmed Mesaik M, et al.
    Int Immunopharmacol, 2015 Sep;28(1):235-43.
    PMID: 26093268 DOI: 10.1016/j.intimp.2015.06.009
    Sarcococca saligna methanolic extract, fractions and isolated pure compounds saracocine (1), saracodine (2), pachyximine-A (3) and terminaline (4) were found to possess potent immunosuppressive activities. The fractions and compounds were tested in-vitro for their effects on human T-cell proliferation, and cytokine (IL-2) production. All the fractions, sub-fractions and purified compounds showed significant suppressive effect on IL-2 production in a dose-dependent manner. They also exhibited a suppressive effect on the phytohemagglutinin-stimulated T-cell proliferation. None of the extracts and purified compounds showed any cytotoxicity effects on the 3T3 mice fibroblast cell line. The crude extract, DCM fraction (pH9), DCM fractions (pH7) and one of the steroidal alkaloids (terminaline) were checked in-vivo for their hepato-protective potential against CCl4-induced liver injury. In in-vivo experiments, the basic and neutral DCM fractions and terminaline (4) significantly reduced inflammation in the liver. DCM fraction (pH9), DCM fractions (pH7) and compound 4 reduced the serum enzyme levels (ALT, AST, and ALP) down to control levels despite CCl4 treatment. They also reduced the CCl4-induced damaged area to almost zero as assessed by histopathology. The pale necrotic areas and mixed inflammatory infiltrate which are seen after CCl4 treatment were absent in the cases of basic, neutral fractions and terminaline treatment. These hepato-protective effects were better than the positive control silymarin. Our results suggest the therapeutic effect of S. saligna extract, fractions and bioactive steroidal alkaloids against CCl4-induced liver injury in vivo and their immunosuppressive function in vitro.
  11. Mohamed SIA, Jantan I, Haque MA
    Int Immunopharmacol, 2017 Sep;50:291-304.
    PMID: 28734166 DOI: 10.1016/j.intimp.2017.07.010
    Natural products with immunomodulatory activity are widely used in treatment of many diseases including autoimmune diseases, inflammatory disorders in addition to cancer. They gained a great interest in the last decades as therapeutic agents since they provide inexpensive and less toxic products than the synthetic chemotherapeutic agents. Immunomodulators are the agents that have the ability to boost or suppress the host defense response that can be used as a prophylaxis as well as in combination with other therapeutic modalities. The anticancer activity of these immunomodulators is due to their anti-inflammatory, antioxidant, and induction of apoptosis, anti-angiogenesis, and anti-metastasis effect. These natural immunomodulators such as genistein, curcumin, and resveratrol can be used as prophylaxis against the initiation of cancer besides the inhibition of tumor growth and proliferation. Whereas, immunostimulants can elicit and activate humoral and cell-mediated immune responses against the tumor that facilitate the recognition and destruction of the already existing tumor. This review represents the recent studies on various natural immunomodulators with antitumor effects. We have focused on the relationship between their anticancer activity and immunomodulatory mechanisms. The mechanisms of action of various immunomodulators such as polyphenolic compounds, flavonoids, organosulfur compounds, capsaicin, vinca alkaloids, bromelain, betulinic acid and zerumbone, the affected cancerous cell lines in addition to the targeted molecules and transcriptional pathways have been review and critically analyzed.
  12. Ahmad W, Jantan I, Kumolosasi E, Haque MA, Bukhari SNA
    Int Immunopharmacol, 2018 Jul;60:141-151.
    PMID: 29730557 DOI: 10.1016/j.intimp.2018.04.046
    The in vivo immunomodulatory activities of Tinospora crispa have been reported but its molecular mechanisms underlying its immunomodulatory properties remains obscure and the active constituents contributing to the activities have not been identified. The present study was aimed to investigate the immunomodulatory effects of T. crispa extract (TCE) and its chemical constituents on RAW 264.7 macrophages. Six known compounds including magnoflorine and syringin were isolated by various chromatographic techniques from TCE and their structures were determined spectroscopically. A validated HPLC method was used to quantify magnoflorine and syringin in the extract. The immunomodulatory effects of TCE and its isolated compounds on chemotaxis, phagocytosis, production of inflammatory mediators including reactive oxygen species (ROS), nitric oxide (NO), prostaglandin E2 (PGE2) and pro-inflammatory cytokines which include tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6 and monocyte chemoattractant protein-1 (MCP-1) on macrophages were assessed. TCE increased the chemotaxis and phagocytic activity of macrophages and significantly enhanced the production of ROS, NO and pro-inflammatory cytokines. All alkaloids isolated, specifically magnoflorine showed remarkable inducing effects on the chemotaxis, phagocytic activity, ROS and NO productions and the secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. In contrast, syringin potently reduced the chemotaxis, phagocytic activity, ROS and NO productions and secretions of IL-1β, TNF-α, IL6, PGE2 and MCP-1. TCE showed strong immunostimulant effects on various components of the immune system and these activities were possibly contributed mainly by the alkaloids specifically magnoflorine. TCE has potential to be developed as an effective natural immunostimulant for improvement of immune-related disorders.
  13. Lee JL, Mohamed Shah N, Makmor-Bakry M, Islahudin F, Alias H, Mohd Saffian S
    Int Immunopharmacol, 2021 Aug;97:107721.
    PMID: 33962225 DOI: 10.1016/j.intimp.2021.107721
    BACKGROUND: Population pharmacokinetics (popPK) using the nonlinear mixed-effect (NLME) modeling approach is an essential tool for guiding dose individualization. Several popPK analyses using the NLME have been conducted to characterize the pharmacokinetics of immunoglobulin G (IgG).

    OBJECTIVE: To summarize the current information on popPK of polyclonal IgG therapy.

    METHOD: A systematic search was conducted in the PubMed and Web of Science databases from inception to December 2020. Additional relevant studies were also included by reviewing the reference list of the reviewed articles. All popPK studies that employed the NLME modeling approach were included and data were synthesized descriptively.

    RESULTS: This review included seven studies. Most of the popPK models were developed in patients with primary immunodeficiency (PID). IgG pharmacokinetics was described as a two-compartment model in five studies, while it was described as a one-compartment model in two other studies. Among all tested covariates, weight was consistently identified as a significant predictor for clearance (CL) of IgG. Whereas, weight and disease type were found to be significant predictors for the volume of distribution in central compartment (Vc). In a typical 70 kg adult, the median estimated values of Vc and CL were 4.04 L and 0.144 L/day, respectively. The between subject variability of Vc was considered large. Only two studies evaluated their models using external data.

    CONCLUSIONS: Seven popPK studies of IgG were found and discussed, with only weight being a significant covariate across all studies. Future studies linking pharmacokinetics with pharmacodynamics in PID and other patient populations are required.

  14. Deng L, Wang S, Guo H, Liu X, Zou X, Zhang R, et al.
    Int Immunopharmacol, 2022 Feb;103:108501.
    PMID: 34974400 DOI: 10.1016/j.intimp.2021.108501
    Bambuterol (BMB) has been used clinically to treat asthma due to its bronchodilation activity. However, the effect of BMB on ulcerative colitis (UC) has not been examined. The present work focused on the effects of enantiomeric BMB on UC. Acute UC was induced in mice by 3% dextran sulfate sodium (DSS), and (R)-, (S) and (RS)-BMB were orally administered. Body weight loss and the disease activity index (DAI) were measured once a day. Inflammatory factors were detected by ELISA and qRT-PCR. Histological evaluations of colon samples were performed. IL-6, STAT3, and RORγt pathway-related proteins were analyzed by western blotting. The results verified that colitis severity was dramatically ameliorated by (R)-BMB, which was significantlybetter than the effect of (RS)-BMB or (S)-BMB, as evidenced by body weight loss, DAI, colon length, spleen/body weight ratio and histopathological manifestations. Furthermore, (R)-BMB treatment significantly diminished the levels of inflammatory cytokines and macrophages infiltration in mice with colitis. Besides, treated with (R)-BMB obviously elevated the level of β2AR. In addition, (R)-BMB decreased the expression of IL-6, IL-17, retinoic acid receptor-related orphan receptor-gamma t (RORt), and phosphorylated STAT3 (p-STAT3) in a dose-dependent manner in the colon tissues. The efficacy of (R)-BMB was more notable than aminosalicylic acid (5-ASA). (R)-BMB is either butyrilcholinesterase inhibitor or β2AR agonist which offers new treatment of colitis.
  15. Alamri RD, Elmeligy MA, Albalawi GA, Alquayr SM, Alsubhi SS, El-Ghaiesh SH
    Int Immunopharmacol, 2021 Apr;93:107398.
    PMID: 33571819 DOI: 10.1016/j.intimp.2021.107398
    Leflunomide (LF) represents the prototype member of dihydroorotate dehydrogenase (DHODH) enzyme inhibitors. DHODH is a mitochondrial inner membrane enzyme responsible for catalytic conversion of dihydroorotate into orotate, a rate-limiting step in the de novo synthesis of the pyrimidine nucleotides. LF produces cellular depletion of pyrimidine nucleotides required for cell growth and proliferation. Based on the affected cells the outcome can be attainable as immunosuppression, antiproliferative, and/or the recently gained attention of the antiviral potentials of LF and its new congeners. Also, protein tyrosine kinase inhibition is an additional mechanistic benefit of LF, which inhibits immunological events such as cellular expansion and immunoglobulin production with an enhanced release of immunosuppressant cytokines. LF is approved for the treatment of autoimmune arthritis of rheumatoid and psoriatic pathogenesis. Also, LF has been used off-label for the treatment of relapsing-remitting multiple sclerosis. However, LF antiviral activity is repurposed and under investigation with related compounds under a phase-I trial as a SARS CoV-2 antiviral in cases with COVID-19. Despite success in improving patients' mobility and reducing joint destruction, reported events of LF-induced liver injury necessitated regulatory precautions. LF should not be used in patients with hepatic impairment or in combination with drugs elaborating a burden on the liver without regular monitoring of liver enzymes and serum bilirubin as safety biomarkers. This study aims to review the pharmacological and safety profile of LF with a focus on the LF-induced hepatic injury from the perspective of pathophysiology and possible protective agents.
  16. Liu C, Liu L, Huang Y, Shi R, Wu Y, Hakimah Binti Ismail I
    Int Immunopharmacol, 2023 Jan;114:109493.
    PMID: 36527879 DOI: 10.1016/j.intimp.2022.109493
    Minimal change disease (MCD) is a common type of nephrotic syndrome with high recurrence rate. This study aims to explore the impacts of interleukin (IL)-33 in MCD and to discuss its potential mechanism. In adriamycin (ADM) and puromycin aminonucleoside (PAN)-induced MCD rat model, IL-33 was used for treatment. H&E staining was applied for detecting histological changes. Critical proteins were examined by western blot. Corresponding commercial kits tested oxidative stress- and inflammation-related factors. Cell apoptosis was measured by TUNEL assay. ADM-induced podocyte injury model was establish to mimic MCD in vitro. Cell proliferation and apoptosis were detected by CCK-8 and TUNEL assays. Finally, podocyte was stimulated by innate lymphoid type-2 cells-secreted Th2 cytokines (ILC2s: IL-13 and IL-5 respectively), with or without incubation with M1 macrophage medium to further explore the immune-regulation of ILC2s behind the inflammatory environment of MCD. It was found that PAN-induced kidney jury, inflammation, oxidative stress and apoptosis were severer than ADM, and IL-33 treatment significantly alleviated the above injuries in PAN and ADM-induced MCD rat model. Moreover, IL-33 reversed the reduced viability and increased oxidative stress and apoptosis in ADM-induced podocyte injury model. Further, the capacities of IL-13 alone in inducing M1/M2 macrophage polarization, apoptosis, inflammation, kidney injury and reducing cell viability are stronger than IL-5. However, IL-13 reversed reduced cell viability and stimulated apoptosis, inflammation, kidney injury mediated by co-incubation with M1-conditioned medium. Collectively, IL-33 might protect against immunologic injury in MCD via mediating ILC2s-secreted IL-13.
  17. Wan Jiun T, Taib H, Majdiah Wan Mohamad W, Mohamad S, Syamimee Wan Ghazali W
    Int Immunopharmacol, 2023 Nov;124(Pt B):110940.
    PMID: 37722261 DOI: 10.1016/j.intimp.2023.110940
    Porphyromonas gingivalis (P. gingivalis) is the primary periodontal pathogen involved in protein citrullination, which triggers the production of anti-cyclic citrullinated peptide (anti-CCP) antibodies, exacerbating rheumatoid arthritis (RA). This study aims to evaluate the amount of P. gingivalis and its association with anti-CCP antibodies in RA patients with periodontitis. This cross-sectional study involves 100 RA patients with a mean age of 52.36 (SD 13.90) years. Smokers and patients with other uncontrolled systemic diseases were excluded. Disease Activity Score-28 (DAS-28) was used to determine RA disease severity. Periodontal parameters were examined to determine periodontal status. Subsequently, plaque samples were collected from the subgingival periodontal pocket for assessment of P. gingivalis bacterial load using the loop-mediated isothermal amplification method. Blood samples (5 ml) were obtained from all participants to analyse anti-CCP antibody levels. Data was analysed by using SPSS version 24.0. Most participants were female (85.0%) and had low RA disease severity (62%). The mean RA disease duration was 7.77 (SD 6.3) years, with a mean DAS-28 of 3.17 (SD 1.0). Forty-seven per cent of participants had periodontitis, but all periodontal parameters were not associated with RA disease activity (P = 0.38). P. gingivalis bacterial load ranged from 10 to 109 copies/μl. Fifty-five per cent of the collected samples showed positive anti-CCP antibody levels, but no significant association was observed with the P. gingivalis bacterial load (P = 0.58). Considering the study's limitations, although periodontitis is prevalent among RA patients, there is a lack of association between P. gingivalis bacterial load and anti-CCP antibody levels, which should be investigated further.
  18. Beng H, Hu J, Wang S, Liang X, Qin H, Tan W
    Int Immunopharmacol, 2023 Aug;121:110482.
    PMID: 37364330 DOI: 10.1016/j.intimp.2023.110482
    Salbutamol, which consists of an R-isomer and S-isomer, is an effective and widely used β2 adrenoreceptor agonist that may possess anti-inflammatory properties in addition to its bronchodilator activity. Whether the salbutamol R-isomer has advantages over its racemic mixture and effectiveness in treating endotoxemia and endotoxin-induced lung injury has not been well studied. In this study, we investigated the preventive and therapeutic effects of R-salbutamol (R-sal), S-salbutamol (S-sal), and their racemic mixture (Rac-sal) on a mouse model of lipopolysaccharide (LPS)-induced endotoxemia. Dexamethasone (Dex) was used for comparison. The results showed that R-sal markedly improved the 7-day survival rate of endotoxic mice when administered before and after LPS treatment. Dex was toxic and accelerated the death of endotoxic mice when administered before LPS injection. Histological examination of the lungs revealed that the LPS challenge resulted in acute lung damage, including inflammatory cell infiltration, thickened alveolar septa, and congestion. R-sal pre-treatment effectively inhibited these changes, accompanied by markedly reduced lung myeloperoxidase levels, serum cytokine levels, and lactate release, significant restoration of lymphocyte count, and reduction of monocyte count. This may have occurred through inhibition of M1 macrophage inflammatory responses by enhancement of β-arrestin2 expression and suppression of NF-κB activation. Rac-sal exhibited diminished effects compared to that of R-sal, while S-sal showed enhanced release of some inflammatory cytokines. In addition, R-sal pre-treatment showed a better improvement in prognostic pulmonary function on day 4 compared to that by Rac-sal. Collectively, our results indicate the potential benefits of R-sal in regulating inflammatory responses to endotoxemia and endotoxin-induced lung injury.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links