Displaying all 7 publications

Abstract:
Sort:
  1. Xie D, Zhang H, Wei H, Lin L, Wang D, Wang M
    Aquat Toxicol, 2023 May;258:106497.
    PMID: 36940520 DOI: 10.1016/j.aquatox.2023.106497
    The continuous fragmentation of plastics and release of synthetic nanoplastics from products have been aggravating nanoplastic pollution in the marine ecosystem. The carrier role of nanoplastics may increase the bioavailability and toxicity effects of toxic metals, e.g., mercury (Hg), which is of growing concern. Here, the copepod Tigriopus japonicus was exposed to polystyrene nanoplastics (PS NPs) and Hg (alone or combined) at environmental realistic concentrations for three generations (F0-F2). Then, Hg accumulation, physiological endpoints, and transcriptome were analyzed. The results showed that the copepod's reproduction was significantly inhibited under PS NPs or Hg exposure. The presence of PS NPs caused significantly higher Hg accumulation, lower survival, and lower offspring production in copepods relative to Hg exposure, suggesting an increased threat to the copepod's survivorship and health. From the molecular perspective, combined PS NPs and Hg caused a graver effect on the DNA replication, cell cycle, and reproduction pathways relative to Hg exposure, linking to lower levels of survivorship and reproduction. Taken together, this study provides an early warning of nanoplastic pollution for the marine ecosystem not only because of their adverse effect per se but also their carrier role for increasing Hg bioaccumulation and toxicity in copepods.
    Matched MeSH terms: Polystyrenes/toxicity
  2. Liang J, Abdullah ALB, Wang H, Liu G, Han M
    Aquat Toxicol, 2023 Oct;263:106711.
    PMID: 37783050 DOI: 10.1016/j.aquatox.2023.106711
    The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
    Matched MeSH terms: Polystyrenes/toxicity
  3. Mojiri A, Vishkaei MN, Zhou JL, Trzcinski AP, Lou Z, Kasmuri N, et al.
    Mar Environ Res, 2024 Feb;194:106343.
    PMID: 38215624 DOI: 10.1016/j.marenvres.2024.106343
    The increasing prevalence of microplastic pollution in aquatic environments has raised concerns about its impact on marine life. Among the different types of microplastics, polystyrene microplastics (PSMPs) are one of the most commonly detected in aquatic systems. Chaetoceros neogracile (diatom) is an essential part of the marine food web and plays a critical role in nutrient cycling. This study aimed to monitor the ecotoxicological impact of PSMPs on diatoms and observe enzymatic interactions through molecular docking simulations. Results showed that diatom growth decreased with increasing concentrations and exposure time to PSMPs, and the lowest photosynthetic efficiency (Fv/Fm) value was observed after 72 and 96 h of exposure to 200 mg L-1 of PSMPs. High concentrations of PSMPs led to a decrease in chlorophyll a content (up to 64.4%) and protein content (up to 35.5%). Molecular docking simulations revealed potential interactions between PSMPs and the extrinsic protein in photosystem II protein of diatoms, suggesting a strong affinity between the two. These findings indicate a detrimental effect of PSMPs on the growth and photosynthetic efficiency of diatoms and highlight the need for further research on the impact of microplastics on marine microbial processes.
    Matched MeSH terms: Polystyrenes/toxicity
  4. Huang M, Ma Y, Qian J, Sokolova IM, Zhang C, Waiho K, et al.
    J Hazard Mater, 2024 Apr 15;468:133801.
    PMID: 38377908 DOI: 10.1016/j.jhazmat.2024.133801
    Pollution with anthropogenic contaminants including antibiotics and nanoplastics leads to gradual deterioration of the marine environment, which threatens endangered species such as the horseshoe crab Tachypleus tridentatus. We assessed the potential toxic mechanisms of an antibiotic (norfloxacin, 0, 0.5, 5 μg/L) and polystyrene nanoparticles (104 particles/L) in T. tridentatus using biomarkers of tissue redox status, molting, and gut microbiota. Exposure to single and combined pollutants led to disturbance of redox balance during short-term (7 days) exposure indicated by elevated level of a lipid peroxidation product, malondialdehyde (MDA). After prolonged (14-21 days) exposure, compensatory upregulation of antioxidants (catalase and glutathione but not superoxide dismutase) was observed, and MDA levels returned to the baseline in most experimental exposures. Transcript levels of molting-related genes (ecdysone receptor, retinoic acid X alpha receptor and calmodulin A) and a molecular chaperone (cognate heat shock protein 70) showed weak evidence of response to polystyrene nanoparticles and norfloxacin. The gut microbiota T. tridentatus was altered by exposures to norfloxacin and polystyrene nanoparticles shown by elevated relative abundance of Bacteroidetes. At the functional level, evidence of suppression by norfloxacin and polystyrene nanoparticles was found in multiple intestinal microbiome pathways related to the genetic information processing, metabolism, organismal systems, and environmental information processing. Future studies are needed to assess the physiological and health consequences of microbiome dysbiosis caused by norfloxacin and polystyrene nanoparticles and assist the environmental risk assessment of these pollutants in the wild populations of the horseshoe crabs.
    Matched MeSH terms: Polystyrenes/toxicity
  5. Zhu C, Zhou W, Han M, Yang Y, Li Y, Jiang Q, et al.
    Sci Total Environ, 2023 Sep 15;891:164460.
    PMID: 37247739 DOI: 10.1016/j.scitotenv.2023.164460
    Microplastics and nanoplastics (MPs and NPs) are abundant, persistent, and widespread environmental pollutants that are of increasing concern as they pose a serious threat to ecosystems and aquatic species. Identifying the ecological effects of NPs pollution requires understanding the effects of changing nanoplastics concentrations in aquatic organisms. Monopterus albus were orally fed three different concentrations of 100 nm polystyrene nanoplastics (PS-NPs): 0.05 %, 0.5 %, and 1 % of the feed for 28 days. Nanoplastics significantly activated the PPAR signaling pathway, Acyl-CoA oxidase 1 (ACOX1), carnitine palmitoyltransferase 1a (CPT1A), angiopoietin-like 4 (ANGPTL4), and phosphoenolpyruvate carboxykinase (PCK) at the mRNA level, resulting in disturbed lipid metabolism. Glutathione peroxidase (GSH-px) activity, catalase (CAT) activity, and malondialdehyde (MDA) were significantly elevated in the high nanoplastics-feeding exposure group, leading to oxidative stress in the liver. Overexpression of the cytokines genes Interleukin 1 (IL1B) and Interleukin-8 (IL8), Tumor necrosis factor alpha (TNF-α), activation of MAPK signaling pathway, and increased gene expression of c-Jun amino-terminal kinases (JNK) and p38 indicate that exposure to NPs may lead to hepatopancreas apoptosis through oxidative stress and inflammation. In summary, dietary PS-NPs exposure alters hepatic glycolipid metabolism, triggering inflammatory responses and apoptosis in M. albus. The results of this study provide valuable ecotoxicological data for a better understanding of the biological fate and effects of nanoplastics in M. albus.
    Matched MeSH terms: Polystyrenes/toxicity
  6. Han M, Zhu C, Tang S, Liang J, Li D, Guo Y, et al.
    Aquat Toxicol, 2023 Sep;262:106644.
    PMID: 37549485 DOI: 10.1016/j.aquatox.2023.106644
    Although there is increasing concern about the toxicity of nanoplastics, the effects of nanoplastic exposure and subsequent recovery on immune responses, as well as antioxidant responses and gut microbiota, in crustaceans are rarely reported. In this study, the nonspecific immunity and antioxidant defense of Eriocheir sinensis were evaluated after acute exposure to various concentrations (0, 2.5, 5, 10 and 20 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 48 h, as well as after 7 days of recovery from the nanoplastic environment. The results showed that, after 48 h of exposure, nanoplastics were observed in the gills, hepatopancreas and gut. However, no nanoplastics were found in the gut after 7 days of recovery. Under nanoplastic-induced stress, Hc, Relish, proPO, and LITAF mRNA levels increased in the gills and hepatopancreas for 48 h. Expression of the myd88, Hc, Relish and proPO genes decreased in the gills during the 7-day recovery period. Exposure to nanoplastics for 48 h and recovery for 7 days significantly decreased the activities of lysozyme (LZM) alkaline phosphatase (AKP), total superoxide dismutase (SOD) and phenoloxidase (POD) and, glutathione peroxidase (GPX) in the hepatopancreas. Meanwhile, the relative abundance of pathogens exposed to 10 mg/L nanoplastics for 48 h increased at the species level, and these pathogens decreased significantly in the 7-day recovery period. These results suggested that exposure to nanoplastics for 48 h affected the activities of immune system enzymes and expression of immune-related genes in Eriocheir sinensis and altered the diversity and composition of their gut microbiota. E. sinensis could not recover from damage to the hepatopancreas within a 7-day recovery period. The results of this study provided insight into the effects of nanoplastics on crustaceans and it filled a gap in research on crustacean recovery after exposure to nanoplastics.
    Matched MeSH terms: Polystyrenes/toxicity
  7. Ma Y, Gao Y, Xu R, Li D, Waiho K, Wang Y, et al.
    Mar Environ Res, 2024 Jan;193:106277.
    PMID: 38040551 DOI: 10.1016/j.marenvres.2023.106277
    Nanoplastics (NPs) and antibiotics (ABs) are two of the emerging marine contaminants that have drawn the most attention in recent years. Given the necessity of figuring out the effects of plastic and antibiotic contamination on marine organism life and population in the natural environment, it is essential to apply rapid and effective biological indicators to evaluate their comprehensive toxic effects. In this study, using mussel (Mytilus coruscus) as a model, we investigated the combined toxic effects of NP (80 nm polystyrene beads) and AB (Norfloxacin, NOR) at environmental-relevant concentrations on antioxidant and immune genes. In terms of the antioxidant genes, NPs significantly increased the relative expression of Cytochrome P450 3A-1 (CYP3A-1) under various concentrations of NOR conditions, but they only significantly increased the relative expression of CYP3A-2 in the high concentration (500 μg L-1 NOR) co-exposure group. In the NP-exposure group which exposed to no or low concentrations of NOR, nuclear factor erythroid 2-related factor 2 (Nrf2) was upregulated. In terms of the immune genes, interleukin-1 receptor-associated kinase (IRAK) -1 showed a significant increase in the low-concentration NOR group while a significant inhibition in the high-concentration NOR group. Due to the presence of NPs, exposure to NOR resulted in a significant increase in both IRAK-4 and heat shock protein (HSP) 70. Our findings indicate that polystyrene NPs can exacerbate the effects of NOR on the anti-oxidant and immune defense performance of mussels. This study delves into the toxic effects of NPs and ABs from a molecular perspective. Given the expected increase in environmental pollution due to NPs and ABs, future research is needed to investigate the potential synergistic effect of NPs and ABs on other organisms.
    Matched MeSH terms: Polystyrenes/toxicity
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links