Ocean acidification, due to increased levels of anthropogenic carbon dioxide, is known to affect the physiology and growth of marine phytoplankton, especially in polar regions. However, the effect of acidification or carbonation on cellular metabolism in polar marine phytoplankton still remains an open question. There is some evidence that small chlorophytes may benefit more than other taxa of phytoplankton. To understand further how green polar picoplankton could acclimate to high oceanic CO2, studies were conducted on an Antarctic Chlorella sp. Chlorella sp. maintained its growth rate (∼0.180 d-1), photosynthetic quantum yield (Fv/Fm = ∼0.69) and chlorophyll a (0.145 fg cell-1) and carotenoid (0.06 fg cell-1) contents under high CO2, while maximum rates of electron transport decreased and non-photochemical quenching increased under elevated CO2. GCMS-based metabolomic analysis reveal that this polar Chlorella strain modulated the levels of metabolites associated with energy, amino acid, fatty acid and carbohydrate production, which could favour its survival in an increasingly acidified ocean.
Currently, nano-formulated mosquito larvicides have been widely proposed to control young instars of malaria vector populations. However, the fate of nanoparticles in the aquatic environment is scarcely known, with special reference to the impact of nanoparticles on enzymatic activity of non-target aquatic invertebrates. In this study, we synthesized CdS nanoparticles using a green protocol relying on the cheap extract of Valoniopsis pachynema algae. CdS nanoparticles showed high toxicity on young instars of the malaria vectors Anopheles stephensi and A. sundaicus. The antimalarial activity of the nano-synthesized product against chloroquine-resistant (CQ-r) Plasmodium falciparum parasites was investigated. From a non-target perspective, we focused on the impact of this novel nano-pesticide on antioxidant enzymes acetylcholinesterase (AChE) and glutathione S-transferase (GST) activities of the mud crab Scylla serrata. The characterization of nanomaterials was carried out by UV-vis and FTIR spectroscopy, as well as SEM and XRD analyses. In mosquitocidal assays, LC50 of V. pachynema-synthesized CdS nanoparticles on A. stephensi ranged from 16.856 (larva I), to 30.301μg/ml (pupa), while for An. sundaicus they ranged from 13.584 to 22.496μg/ml. The antiplasmodial activity of V. pachynema extract and CdS nanoparticles was evaluated against CQ-r and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. IC50 of V. pachynema extract was 58.1μg/ml (CQ-s) and 71.46μg/ml (CQ-r), while nano-CdS IC50 was 76.14μg/ml (CQ-s) and 89.21μg/ml (CQ-r). In enzymatic assays, S. serrata crabs were exposed to sub-lethal concentrations, i.e. 4, 6 and 8μg/ml of CdS nanoparticles, assessing changes in GST and AChE activity after 16days. We observed significantly higher activity of GST, if compared to the control, during the whole experiment period. In addition, a single treatment with CdS nanoparticles led to a significant decrease in AChE activity over time. The toxicity of CdS nanoparticles and Cd ions in aqueous solution was also assessed in mud crabs, showing higher toxicity of aqueous Cd ions if compared to nano-CdS. Overall, our results underlined the efficacy of green-synthesized CdS nanoparticles in malaria vector control, outlining also significant impacts on the enzymatic activity of non-target aquatic organisms, with special reference to mud crabs.
The continuous fragmentation of plastics and release of synthetic nanoplastics from products have been aggravating nanoplastic pollution in the marine ecosystem. The carrier role of nanoplastics may increase the bioavailability and toxicity effects of toxic metals, e.g., mercury (Hg), which is of growing concern. Here, the copepod Tigriopus japonicus was exposed to polystyrene nanoplastics (PS NPs) and Hg (alone or combined) at environmental realistic concentrations for three generations (F0-F2). Then, Hg accumulation, physiological endpoints, and transcriptome were analyzed. The results showed that the copepod's reproduction was significantly inhibited under PS NPs or Hg exposure. The presence of PS NPs caused significantly higher Hg accumulation, lower survival, and lower offspring production in copepods relative to Hg exposure, suggesting an increased threat to the copepod's survivorship and health. From the molecular perspective, combined PS NPs and Hg caused a graver effect on the DNA replication, cell cycle, and reproduction pathways relative to Hg exposure, linking to lower levels of survivorship and reproduction. Taken together, this study provides an early warning of nanoplastic pollution for the marine ecosystem not only because of their adverse effect per se but also their carrier role for increasing Hg bioaccumulation and toxicity in copepods.
The COVID-19 pandemic has further intensified plastic pollution due to the escalated use of single-use gloves and masks, consequently leading to the widespread presence of microplastics (MPs) and nanoplastics (NPs) in major rivers and lakes worldwide. Macrobrachium rosenbergii has become an important experimental subject due to its ecological role and environmental sensitivity. In this study, we sought to comprehend the ramifications of NPs on the widely-distributed freshwater prawn, M rosenbergii, by conducting a detailed analysis of its responses to NPs after both 96 h and 30 days of exposure. The transcriptome analysis revealed 918 differentially expressed unigenes (DEGs) after 30 days of NPs exposure (356 upregulated, 562 downregulated) and 2376 DEGs after 96 h of NPs exposure (1541 upregulated, 835 downregulated). The results of DEGs expression indicated that acute NPs exposure enhanced carbohydrate transport and metabolism, fostering chitin and extracellular matrix processes. In contrast, chronic NPs exposure induced nucleolar stress in M. rosenbergii, impeding ribosome development and mRNA maturation while showing no significant changes in glucose metabolism. Our findings underscore the M. rosenbergii distinct coping mechanisms during acute and chronic NPs exposure, elucidating its vital adaptive strategies. These results contribute to our understanding of the ecological implications of NPs pollution and its impact on aquatic animals.
Environmental micro(nano)plastics have become a significant global pollution problem due to the widespread use of plastic products. In this review, we summarized the latest research advances on micro(nano)plastics in the environment, including their distribution, health risks, challenges, and future prospect. Micro(nano)plastics have been found in a variety of environmental media, such as the atmosphere, water bodies, sediment, and especially marine systems, even in remote places like Antarctica, mountain tops, and the deep sea. The accumulation of micro(nano)plastics in organisms or humans through ingestion or other passive ways poses a series of negative impacts on metabolism, immune function, and health. Moreover, due to their large specific surface area, micro(nano)plastics can also adsorb other pollutants, causing even more serious effects on animal and human health. Despite the significant health risks posed by micro(nano)plastics, there are limitations in the methods used to measure their dispersion in the environment and their potential health risks to organisms. Therefore, further research is needed to fully understand these risks and their impacts on the environment and human health. Taken together, the challenges of micro(nano)plastics analysis in the environment and organisms must be addressed, and future research prospects need to be identified. Governments and individuals must take action to reduce plastic waste and minimize the negative impact of micro(nano)plastics on the environment and human health.
Although there is increasing concern about the toxicity of nanoplastics, the effects of nanoplastic exposure and subsequent recovery on immune responses, as well as antioxidant responses and gut microbiota, in crustaceans are rarely reported. In this study, the nonspecific immunity and antioxidant defense of Eriocheir sinensis were evaluated after acute exposure to various concentrations (0, 2.5, 5, 10 and 20 mg/L) of 75-nm polystyrene nanoplastics (PS-NPs) for 48 h, as well as after 7 days of recovery from the nanoplastic environment. The results showed that, after 48 h of exposure, nanoplastics were observed in the gills, hepatopancreas and gut. However, no nanoplastics were found in the gut after 7 days of recovery. Under nanoplastic-induced stress, Hc, Relish, proPO, and LITAF mRNA levels increased in the gills and hepatopancreas for 48 h. Expression of the myd88, Hc, Relish and proPO genes decreased in the gills during the 7-day recovery period. Exposure to nanoplastics for 48 h and recovery for 7 days significantly decreased the activities of lysozyme (LZM) alkaline phosphatase (AKP), total superoxide dismutase (SOD) and phenoloxidase (POD) and, glutathione peroxidase (GPX) in the hepatopancreas. Meanwhile, the relative abundance of pathogens exposed to 10 mg/L nanoplastics for 48 h increased at the species level, and these pathogens decreased significantly in the 7-day recovery period. These results suggested that exposure to nanoplastics for 48 h affected the activities of immune system enzymes and expression of immune-related genes in Eriocheir sinensis and altered the diversity and composition of their gut microbiota. E. sinensis could not recover from damage to the hepatopancreas within a 7-day recovery period. The results of this study provided insight into the effects of nanoplastics on crustaceans and it filled a gap in research on crustacean recovery after exposure to nanoplastics.
Micro- and nano-plastics (MPs/NPs) are characterized by their small size and extensive surface area, making them global environmental pollutants with adverse effects on organisms at various levels, including organs, cells, and molecules. Freshwater organisms, such as microalgae, emerging plants, zooplankton, benthic species, and fish, experience varying impacts from MPs/NPs, which are prevalent in both terrestrial and aquatic inland environments. MPs/NPs significantly impact plant physiological processes, including photosynthesis, antioxidant response, energy metabolism, and nitrogen removal. Extended exposure and ingestion to MPs/NPs might cause metabolic and behavioral deviations in zooplankton, posing an extinction risk. Upon exposure to MPs/NPs, both benthic organisms and fish display behavioral and metabolic disturbances, due to oxidative stress, neural toxicity, intestinal damage, and metabolic changes. Results from laboratory and field investigations have confirmed that MPs/NPs can be transported across multiple trophic levels. Moreover, MPs/NPs-induced alterations in zooplankton populations can impede energy transfer, leading to food scarcity for filter-feeding fish, larvae of benthic organism and fish, thus jeopardizing aquatic ecosystems. Furthermore, MPs/NPs can harm the nervous systems of aquatic organisms, influencing their feeding patterns, circadian rhythms, and mobility. Such behavioral alterations might also introduce unforeseen ecological risks. This comprehensive review aims to explore the consequences of MPs/NPs on freshwater organisms and their interconnected food webs. The investigation encompasses various aspects, including behavioral changes, alterations in physiology, impacts on metabolism, transgenerational effects, and the disruption of energy transfer within the ecosystem. This review elucidated the physiological and biochemical toxicity of MPs/NPs on freshwater organisms, and the ensuing risks to inland aquatic ecosystems.
Marine nano-titanium dioxide (nano-TiO2) and pentachlorophenol (PCP) pollution are escalating concerns in coastal areas. This study investigated the combined effects of continuous exposure to nano-TiO2 (25 nm, 100 nm) and PCP (0, 1, 10 μg/L) for 28 days on the antioxidant, digestive, and immune abilities of the swimming crab Portunus trituberculatus. Compared with the control group, the interaction between nano-TiO2 and PCP was significantly higher than exposure to a single stressor, with a pronounced decrease in amylase activity observed due to the reducing nano-TiO2 particle sizes. Resulting in increased MDA and SOD activity. The expression levels of Toll4, CSP3, and SER genes in crab hemolymph showed perturbations following exposure to nano-TiO2 and PCP. In summary, according to the results of CAT, GPX, PES and AMS enzyme activities, it was concluded that compared to the larger particle size (100 nm), the single stress of nano-TiO2 at a smaller particle size (25 nm) and co-stress with PCP have more significant impacts on P. trituberculatus. However, the potential physiological regulation mechanism of the interaction between these pollutants remains elusive and requires further study.
Phenytoin, an antiepileptic drug, induces neurotoxicity and abnormal embryonic development and reduces spontaneous locomotor activity in fish. However, its effects on other endpoints remain unclear. Therefore, we investigated the effects of phenytoin on the swimming behavior and reproductive ability of Japanese medaka. Abnormalities in swimming behavior, such as imbalance, rotation, rollover, and vertical swimming, were observed. However, when phenytoin exposure was discontinued, the behavioral abnormality rates decreased. Phenytoin exposure also significantly reduced reproductive ability. By investigating reproduction-related gene expression of gnrh1, gnrh2, fshb, and lhb remained unchanged in males and females. In contrast, kiss1 expression was significantly suppressed due to phenytoin exposure in males and females. kiss2 expression was also significantly suppressed in females but not in males. We filmed videos to examine phenytoin exposure effects on sexual behavior. Females showed no interest in the male's courtship. As the kisspeptin 1 system controls sexual behavior in Japanese medaka, phenytoin exposure may have decreased kiss1 expression, which decreased female reproductive motivation; hence, they did not spawn eggs. This is the first study to show that phenytoin exposure induces behavioral abnormalities, and suppresses kiss1 expression and reproductive performance in Japanese medaka.
The global prevalence and accumulation of plastic waste is leading to pollution levels that cause significant damage to ecosystems and ecological security. Exposure to two concentrations (1 and 5 mg/L) of 500 nm polystyrene (PS)-nanoplastics (NPs) for 14 d was evaluated in Simocephalus vetulus using transcriptome and 16 s rRNA sequencing analyses. PS-NP exposure resulted in stress-induced antioxidant defense, disturbed energy metabolism, and affected the FoxO signaling pathway, causing neurotoxicity. The expression of Cyclin D1 (CCND), glucose-6-phosphatase (G6PC) and phosphoenolpyruvate carboxykinase (PCK) genes was decreased compared to the control, whereas the expression of caspase3 (CASP3), caspase7 (CASP7), Superoxide dismutase (SOD), Heat shock protein 70 (HSP70), MPV17, and Glutathione S-transferase (GST) genes was increased, thus, suggesting that NP ingestion triggered oxidative stress and disrupted energy metabolism.. PS-NPs were present in the digestive tract of S. vetulus after 14 days of exposure. In addition, the abundance of the Proteobacteria and opportunistic pathogens was elevated after PS-NPs exposure. The diversity and homeostasis of the S. vetulus gut microbiota were disrupted and the stability of intestinal barrier function was impaired. Multiomic analyses highlighted the molecular toxicity and microbial changes in S. vetulus after exposure to NPs, providing an overview of how plastic pollution affects freshwater organisms and ecosystems.