Displaying all 13 publications

Abstract:
Sort:
  1. Jayanthi Antonisamy A, Marimuthu S, Malayandi S, Rajendran K, Lin YC, Andaluri G, et al.
    Environ Res, 2023 Jan 15;217:114758.
    PMID: 36400225 DOI: 10.1016/j.envres.2022.114758
    The concept of zero waste discharge has been gaining importance in recent years towards attaining a sustainable environment. Fruit processing industries generate millions of tons of byproducts like fruit peels and seeds, and their disposal poses an environmental threat. The concept of extracting value-added bioactive compounds from bio-waste is an excellent opportunity to mitigate environmental issues. To date, significant research has been carried out on the extraction of essential biomolecules, particularly polysaccharides from waste generated by fruit processing industries. In this review article, we aim to summarize the different extraction methodologies, characterization methods, and biomedical applications of polysaccharides extracted from seeds and peels of different fruit sources. The review also focuses on the general scheme of extraction of polysaccharides from fruit waste with special emphasis on various methods used in extraction. Also, the various types of polysaccharides obtained from fruit processing industrial wastes are explained in consonance with the important techniques related to the structural elucidation of polysaccharides obtained from seed and peel waste. The use of seed polysaccharides as pharmaceutical excipients and the application of peel polysaccharides possessing biological activities are also elaborated.
    Matched MeSH terms: Polysaccharides/analysis
  2. Mustaffa NIH, Khairul Anuar AN, Zaini NS, Mohamed KN, Latif MT
    Mar Pollut Bull, 2024 Sep;206:116798.
    PMID: 39116752 DOI: 10.1016/j.marpolbul.2024.116798
    The sea surface microlayer (SML), particularly in monsoon-influenced regions, remains largely unexplored. This study aims to determine the concentrations, enrichment, and factors controlling the enrichment processes of surface-active substances (SASs), which include surfactants, dissolved monosaccharides (MCHOs), polysaccharides (PCHOs), total dissolved carbohydrates (TDCHOs), and transparent exopolymer particles (TEPs) around the coastal area of Malaysian Peninsula. The SML samples and underlying water (ULW) from a depth of 1 m were collected during the southwest (August and September 2023) and northeast (November 2023) monsoons. Surfactants, TEPs, and dissolved carbohydrates were measured spectrometrically using methylene blue, the Alcian blue assay, and 2,4,6-Tri(2-pyridyl)-s-triazine (TPTZ), respectively. The results showed that stations influenced by anthropogenic activities were generally enriched with surfactants (Enrichment factor, EF = 1.40 ± 0.91) and carbohydrate species (TDCHOs = 1.38 ± 0.28, MCHOs = 1.54 ± 0.57, PCHOs = 1.85 ± 1.43). However, TEP enrichment was not observed in our study (EF = 0.68 ± 0.24). The SASs in the SML were correlated with their underlying concentrations, implying that transport from underlying water could be a major source of substances in the SML. High carbohydrate concentrations and enrichment were found during the northeast monsoon, implying that rain and runoff water affect concentrations in the SML. Besides, the enrichment of SASs persists at moderate wind speeds and is depleted at high wind speeds.
    Matched MeSH terms: Polysaccharides/analysis
  3. Kanagasabapathy G, Chua KH, Malek SN, Vikineswary S, Kuppusamy UR
    Food Chem, 2014 Feb 15;145:198-204.
    PMID: 24128468 DOI: 10.1016/j.foodchem.2013.08.051
    Mushrooms have been used to treat various diseases for thousands of years. In the present study, the effects of Pleurotus sajor-caju mushroom on lipogenesis, lipolysis and oxidative stress in 3T3-L1 cells were investigated. The β-glucan-rich polysaccharides (GE) from P. sajor-caju stimulated lipogenesis and lipolysis but attenuated protein carbonyl and lipid hydroperoxide levels in 3T3-L1 cells. This extract caused an increase in the expression of 5'-AMP-activated protein kinase subunit γ-2 (PKRAG2) and 5'-AMP-activated protein kinase subunit γ-3 (PKRAG3) when compared to control (untreated) cells. Moreover, GE induced the expressions of hormone-sensitive lipase, adipose triglyceride lipase enzymes, leptin, adiponectin and glucose transporter-4 in 3T3-L1 cells which may have contributed to the lipolytic and insulin-like activities observed in this study. These findings suggest that GE is a novel AMPK activator that may be valuable in the formulation of nutraceuticals and functional food for the prevention and treatment of diabetes mellitus.
    Matched MeSH terms: Polysaccharides/analysis
  4. Fazilah A, Azemi MN, Karim AA, Norakma MN
    J Agric Food Chem, 2009 Feb 25;57(4):1527-31.
    PMID: 19166335 DOI: 10.1021/jf8028013
    Hemicelluloses from oil palm frond (OPF) were extracted using 3 M potassium hydroxide (KOH) for 4 h at 40 degrees C with stirring at 400 rpm to obtain hemicelluloses A and B. The total yield of the hemicellulose isolated from OPF was 33% (dry weight). Both hemicelluloses A and B were then subjected to hydrothermal treatment at 121 degrees C and 1.03 x 10(5) Pa for 10, 30, and 50 min. Physicochemical characterizations of hydrothermally treated hemicelluloses, such as Klason lignin content and reducing sugar content, were performed to study the effect of autohydrolysis processing on OPF-derived hemicelluloses. It was shown that Klason lignin content in hemicellulose A was higher than that in hemicellulose B and decreased after hydrothermal treatment. Hydrothermal treatment enhanced the solubility of hemicelluloses, which reflects their higher reducing sugar content. Monosaccharide analysis using HPLC showed that xylose was the predominant monosaccharide for both hemicelluloses A and B.
    Matched MeSH terms: Polysaccharides/analysis
  5. Puthucheary SD, Vadivelu J, Ce-Cile C, Kum-Thong W, Ismail G
    Am J Trop Med Hyg, 1996 Mar;54(3):313-4.
    PMID: 8600773
    The occurrence of latency and relapse in human melioidosis suggests adaptations by Burkholderia pseudomallei that help to avoid the human immune response. Ruthenium red-stained preparations of bacterial cultures viewed by electron microscopy revealed three morphologically distinct variants; one with a very marked and another with a less electron-dense layer surrounding the cell wall, and a third variety devoid of such a structure. This structure may be attributable to a layer of polysaccharide, suggesting the presence of a glycocalyx that may aid in the survival of the organism during latency.
    Matched MeSH terms: Polysaccharides/analysis
  6. Everest-Dass AV, Briggs MT, Kaur G, Oehler MK, Hoffmann P, Packer NH
    Mol Cell Proteomics, 2016 09;15(9):3003-16.
    PMID: 27412689 DOI: 10.1074/mcp.M116.059816
    Ovarian cancer is a fatal gynaecological malignancy in adult women with a five-year overall survival rate of only 30%. Glycomic and glycoproteomic profiling studies have reported extensive protein glycosylation pattern alterations in ovarian cancer. Therefore, spatio-temporal investigation of these glycosylation changes may unearth tissue-specific changes that occur in the development and progression of ovarian cancer. A novel method for investigating tissue-specific N-linked glycans is using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) on formalin-fixed paraffin-embedded (FFPE) tissue sections that can spatially profile N-glycan compositions released from proteins in tissue-specific regions. In this study, tissue regions of interest (e.g. tumor, stroma, adipose tissue and necrotic areas) were isolated from FFPE tissue sections of advanced serous ovarian cancers (n = 3). PGC-LC-ESI-MS/MS and MALDI-MSI were used as complementary techniques to firstly generate structural information on the tissue-specific glycans in order to then obtain high resolution images of the glycan structure distribution in ovarian cancer tissue. The N-linked glycan repertoires carried by the proteins in these tissue regions were structurally characterized for the first time in FFPE ovarian cancer tissue regions, using enzymatic peptide-N-glycosidase F (PNGase F) release of N-glycans. The released glycans were analyzed by porous graphitized carbon liquid chromatography (PGC-LC) and collision induced electrospray negative mode MS fragmentation analysis. The N-glycan profiles identified by this analysis were then used to determine the location and distribution of each N-glycan on FFPE ovarian cancer sections that were treated with PNGase F using high resolution MALDI-MSI. A tissue-specific distribution of N-glycan structures identified particular regions of the ovarian cancer sections. For example, high mannose glycans were predominantly expressed in the tumor tissue region whereas complex/hybrid N-glycans were significantly abundant in the intervening stroma. Therefore, tumor and non-tumor tissue regions were clearly demarcated solely on their N-glycan structure distributions.
    Matched MeSH terms: Polysaccharides/analysis*
  7. Mittal P, Briggs M, Klingler-Hoffmann M, Kaur G, Packer NH, Oehler MK, et al.
    Anal Bioanal Chem, 2021 Apr;413(10):2721-2733.
    PMID: 33222001 DOI: 10.1007/s00216-020-03039-z
    It is well established that cell surface glycans play a vital role in biological processes and their altered form can lead to carcinogenesis. Mass spectrometry-based techniques have become prominent for analysing N-linked glycans, for example using matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). Additionally, MALDI MS can be used to spatially map N-linked glycans directly from cancer tissue using a technique termed MALDI MS imaging (MALDI MSI). This powerful technique combines mass spectrometry and histology to visualise the spatial distribution of N-linked glycans on a single tissue section. Here, we performed N-glycan MALDI MSI on six endometrial cancer (EC) formalin-fixed paraffin-embedded (FFPE) tissue sections and tissue microarrays (TMA) consisting of eight EC patients with lymph node metastasis (LNM) and twenty without LNM. By doing so, several putative N-linked glycan compositions were detected that could significantly distinguish normal from cancerous endometrium. Furthermore, a complex core-fucosylated N-linked glycan was detected that could discriminate a primary tumour with and without LNM. Structural identification of these putative N-linked glycans was performed using porous graphitized carbon liquid chromatography tandem mass spectrometry (PGC-LC-MS/MS). Overall, we observed higher abundance of oligomannose glycans in tumour compared to normal regions with AUC ranging from 0.85-0.99, and lower abundance of complex N-linked glycans with AUC ranges from 0.03-0.28. A comparison of N-linked glycans between primary tumours with and without LNM indicated a reduced abundance of a complex core-fucosylated N-glycan (Hex)2(HexNAc)2(Deoxyhexose)1+(Man)3(GlcNAc)2, in primary tumour with associated lymph node metastasis. In summary, N-linked glycan MALDI MSI can be used to differentiate cancerous endometrium from normal, and endometrial cancer with LNM from endometrial cancer without.
    Matched MeSH terms: Polysaccharides/analysis*
  8. Goh CS, Lee KT, Bhatia S
    Bioresour Technol, 2010 Oct;101(19):7362-7.
    PMID: 20471249 DOI: 10.1016/j.biortech.2010.04.048
    This work presents the pretreatment of oil palm fronds (OPF) using hot compressed water (HCW) to enhance sugar recovery in enzymatic hydrolysis. A central, composite rotatable design was used to optimize the effect of reaction temperature, reaction time and liquid-solid ratio on the pretreatment process. All variables were found to significantly affect the glucose yield. A quadratic polynomial equation was used to model glucose yield by multiple regression analysis, using response surface methodology (RSM). Using a 10 bar pressurized reactor, the optimum conditions for pretreatment of OPF were found at 178 degrees C, 11.1 min and a liquid-solid ratio of 9.6. The predicted glucose yield was 92.78 wt.% at the optimum conditions. Experimental verification of the optimum conditions gave a glucose yield in good agreement with the estimated value of the model.
    Matched MeSH terms: Polysaccharides/analysis
  9. Mohd Fauziee NA, Chang LS, Wan Mustapha WA, Md Nor AR, Lim SJ
    Int J Biol Macromol, 2021 Jan 15;167:1135-1145.
    PMID: 33188815 DOI: 10.1016/j.ijbiomac.2020.11.067
    Brown seaweeds are rich source of functional polysaccharides that exhibit various bioactivities. However, Malaysian seaweeds are under-utilised, leading to low revenue throughout the supply chain of the seaweed industry. The aims of this study were to extract the functional polysaccharides, namely fucoidan (F), laminaran (L) and alginate (A) from Malaysian brown seaweeds (Sargassum polycystum, Turbinaria ornata and Padina boryana) and subsequently evaluate the properties of the extracted polysaccharides. P. boryana recorded the significantly (p ≤ 0.05) highest carbohydrate content (74.78 ± 1.63%) with highest fucoidan yield (Fpad = 1.59 ± 0.16%) while T. ornata contained significantly (p ≤ 0.05) highest alginate yield (Atur = 105.19 ± 3.45%). Water activities of these extracted polysaccharides varied from 0.63-0.71 with average score of browning indexes (~40). Fourier transform infrared (FTIR) spectroscopy analysis demonstrated that the extracted polysaccharides exhibited similar spectral pattern of spectra with the respective standards. Meanwhile, laminaran extracts showed the significantly highest (p ≤ 0.05) total phenolic contents (Lsar = 43.29 ± 0.43 mgGAE/g) and superoxide anion scavenging activity (Lsig = 21.7 ± 3.6%). On the other hand, the significantly highest (p ≤ 0.05) DPPH scavenging activity was recorded in alginate with Asar at 85.3 ± 0.8%. These findings reported the properties and bioactivities of natural polysaccharides from Malaysian brown seaweeds that revealed the potential to develop high-value functional ingredients from Malaysian brown seaweeds.
    Matched MeSH terms: Polysaccharides/analysis
  10. Phan CW, David P, Tan YS, Naidu M, Wong KH, Kuppusamy UR, et al.
    ScientificWorldJournal, 2014;2014:378651.
    PMID: 25121118 DOI: 10.1155/2014/378651
    Two strains of Pleurotus giganteus (commercial and wild) were tested for their ability to induce neurite outgrowth in rat pheochromocytoma (PC12) and mouse neuroblastoma-2a (N2a) cells. Treatment with the mushroom extracts resulted in neuronal differentiation and neuronal elongation, but not nerve growth factor (NGF) production. Linoleic acid (4.5-5.0%, w/w) which is a major fatty acid present in the ethanol extract promoted NGF biosynthesis when augmented with low concentration of NGF (5 ng/mL). The two strains of mushroom were found to be high in protein (154-192 g kg(-1)), total polysaccharides, phenolics, and flavonoids as well as vitamins B1, B2, and B3. The total phenolics present in the mushroom extracts were positively correlated to the antioxidant activity (free radical scavenging, ferric reducing power, and lipid peroxidation inhibition). To conclude, P. giganteus could potentially be used in well-balanced diet and as a source of dietary antioxidant to promote neuronal health.
    Matched MeSH terms: Polysaccharides/analysis
  11. Al-Sheraji SH, Ismail A, Manap MY, Mustafa S, Yusof RM
    J Food Sci, 2012 Nov;77(11):M624-30.
    PMID: 23106104 DOI: 10.1111/j.1750-3841.2012.02955.x
    The viability and activity of Bifidobacterium pseudocatenulatum G4, B. longum BB 536 and yoghurt cultures (Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus) were studied in yoghurt containing 0.75% Mangefira pajang fibrous polysaccharides (MPFP) and inulin. Growth of probiotic organisms, their proteolytic activities, the production of short chain fatty acids (lactic, acetic and propionic) and the pH of the yoghurt samples were determined during refrigerated storage at 4 °C for 28 d. B. pseudocatenulatum G4 and B. longum BB 536 showed better growth and activity in the presence of MPFP and inulin, which significantly increased the production of short chain fatty acids as well as the proteolytic activity of these organisms.
    Matched MeSH terms: Polysaccharides/analysis*
  12. Iluyemi FB, Hanafi MM, Radziah O, Kamarudin MS
    Bioresour Technol, 2006 Feb;97(3):477-82.
    PMID: 16216731
    Palm kernel cake (PKC), an agro-industrial by-product used extensively in the animal feed industry, has limited use in fish feeds due to its high fiber and low protein contents. In this study, PKC was processed under solid state culture conditions with five fungal strains and the effect of this fungal culturing on the amino acid, fatty acid, cellulose and hemicellulose fractions was evaluated. Fungal strains used were Sclerotium rolfsii, Trichoderma harzianum, Trichoderma longiobrachiatum, Trichoderma koninggi and Aspergillus niger. Fungal growth was carried out at 50% moisture level and 1% inoculum level for 7 days. A significant increase in protein content from 18.76% to 32.79% was obtained by growing T. longibrachiatum on PKC. Cellulose level decreased significantly from 28.31% to 12.11% for PKC cultured with T. longibrachiatum, and hemicellulose from 37.03% to 19.01% for PKC cultured with A. niger. Fungal culturing of PKC brought about an increase in the level of unsaturated- and a decrease in the level of the saturated-fatty acids.
    Matched MeSH terms: Polysaccharides/analysis
  13. Kanagasabapathy G, Kuppusamy UR, Abd Malek SN, Abdulla MA, Chua KH, Sabaratnam V
    PMID: 23259700 DOI: 10.1186/1472-6882-12-261
    BACKGROUND: Pleurotus sajor-caju (P. sajor-caju) has been extremely useful in the prevention of diabetes mellitus due to its low fat and high soluble fiber content for thousands of years. Insulin resistance is a key component in the development of diabetes mellitus which is caused by inflammation. In this study, we aimed to investigate the in vivo efficacy of glucan-rich polysaccharide of P. sajor-caju (GE) against diabetes mellitus and inflammation in C57BL/6J mice fed a high-fat diet.
    METHODS: Diabetes was induced in C57BL/6J mice by feeding a high-fat diet. The mice were randomly assigned to 7 groups (n=6 per group). The control groups in this study were ND (for normal diet) and HFD (for high-fat diet). The treated groups were ND240 (for normal diet) (240 mg/kg b.w) and HFD60, HFD120 and HFD240 (for high-fat), where the mice were administrated with three dosages of GE (60, 120, 240 mg GE/kg b.w respectively). Metformin (2 mg/kg b.w) served as positive control. The glucose tolerance test, glucose and insulin levels were measured at the end of 16 weeks. Expressions of genes for inflammatory markers, GLUT-4 and adiponectin in the adipose tissue of the mice were assessed. One-way ANOVA and Duncan's multiple range tests (DMRT) were used to determine the significant differences between groups.
    RESULTS: GE treated groups improved the glucose tolerance, attenuated hyperglycemia and hyperinsulinemia in the mice by up-regulating the adiponectin and GLUT-4 gene expressions. The mice in GE treated groups did not develop insulin resistance. GE also down-regulated the expression of inflammatory markers (IL-6, TNF-α, SAA2, CRP and MCP-1) via attenuation of nuclear transcription factors (NF-κB).
    CONCLUSION: Glucan-rich polysaccharide of P. sajor-caju can serve as a potential agent for prevention of glucose intolerance, insulin resistance and inflammation.
    Matched MeSH terms: Polysaccharides/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links