Displaying all 8 publications

Abstract:
Sort:
  1. Abdul Rahim MBH, Chilloux J, Martinez-Gili L, Neves AL, Myridakis A, Gooderham N, et al.
    Acta Diabetol, 2019 May;56(5):493-500.
    PMID: 30903435 DOI: 10.1007/s00592-019-01312-x
    The human gut is a home for more than 100 trillion bacteria, far more than all other microbial populations resident on the body's surface. The human gut microbiome is considered as a microbial organ symbiotically operating within the host. It is a collection of different cell lineages that are capable of communicating with each other and the host and has an ability to undergo self-replication for its repair and maintenance. As the gut microbiota is involved in many host processes including growth and development, an imbalance in its ecological composition may lead to disease and dysfunction in the human. Gut microbial degradation of nutrients produces bioactive metabolites that bind target receptors, activating signalling cascades, and modulating host metabolism. This review covers current findings on the nutritional and pharmacological roles of selective gut microbial metabolites, short-chain fatty acids, methylamines and indoles, as well as discussing nutritional interventions to modulate the microbiome.
    Matched MeSH terms: Indoles/administration & dosage*
  2. Tan D, Phipps C, Hwang WY, Tan SY, Yeap CH, Chan YH, et al.
    Lancet Haematol, 2015 Aug;2(8):e326-33.
    PMID: 26688485 DOI: 10.1016/S2352-3026(15)00097-6
    BACKGROUND: Patients with relapsed or refractory peripheral T-cell lymphoma have a poor prognosis after conventional chemotherapy. Approved novel agents have only modest single-agent activity in most subtypes of peripheral T-cell lymphoma. Panobinostat is a potent oral pan-deacetylase inhibitor. Findings of many preclinical studies have shown synergistic antilymphoma activity when panobinostat is combined with the proteasome inhibitor bortezomib. We aimed to study the effect of panobinostat and bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma.

    METHODS: In this open-label, multicentre phase 2 trial, we recruited patients aged 21 years or older with relapsed or refractory peripheral T-cell lymphoma who had received at least one previous line of systemic therapy from five tertiary hospitals in Singapore, Malaysia, and South Korea. Patients received 20 mg oral panobinostat three times a week and 1·3 mg/m(2) intravenous bortezomib two times a week, both for 2 of 3 weeks for up to eight cycles. The primary endpoint was the proportion of patients who achieved an objective response in accordance with the International Working Group revised response criteria; analyses were by intention to treat. The study is completed and is registered with ClinicalTrials.gov, number NCT00901147.

    FINDINGS: Between Nov 9, 2009, and Nov 26, 2013, we enrolled 25 patients with various histological subtypes of peripheral T-cell lymphoma. Of 23 patients assessable for responses, ten (43%, 95% CI 23-63) patients had an objective response, of which five were complete responses. Serious adverse events were reported in ten (40%) of 25 patients. Common treatment-related grade 3-4 adverse events included thrombocytopenia (17 [68%]), neutropenia (ten [40%]), diarrhoea (five [20%]), and asthenia or fatigue (two [8%]). We recorded peripheral neuropathy of any grade in ten (40%) patients.

    INTERPRETATION: Combined proteasome and histone deacetylase inhibition is safe and feasible and shows encouraging activity for patients with peripheral T-cell lymphoma. Our findings validate those of preclinical studies showing synergism in the combination and represent a rational way forward in harnessing the full potential of novel agents in peripheral T-cell lymphoma.

    FUNDING: Novartis Pharmaceuticals, Janssen Pharmaceuticals, and Singhealth Foundation.

    Matched MeSH terms: Indoles/administration & dosage
  3. Liu M, Huang P, Wang Q, Ren B, Oyeleye A, Liu M, et al.
    J Antibiot (Tokyo), 2017 05;70(5):715-717.
    PMID: 28074054 DOI: 10.1038/ja.2016.160
    Matched MeSH terms: Indoles/administration & dosage*
  4. Rothan HA, Amini E, Faraj FL, Golpich M, Teoh TC, Gholami K, et al.
    Sci Rep, 2017 03 30;7:45540.
    PMID: 28358047 DOI: 10.1038/srep45540
    N-methyl-D-aspartate receptors (NMDAR) play a central role in epileptogensis and NMDAR antagonists have been shown to have antiepileptic effects in animals and humans. Despite significant progress in the development of antiepileptic therapies over the previous 3 decades, a need still exists for novel therapies. We screened an in-house library of small molecules targeting the NMDA receptor. A novel indolyl compound, 2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde, (DDBM) showed the best binding with the NMDA receptor and computational docking data showed that DDBM antagonised the binding sites of the NMDA receptor at lower docking energies compared to other molecules. Using a rat electroconvulsive shock (ECS) model of epilepsy we showed that DDBM decreased seizure duration and improved the histological outcomes. Our data show for the first time that indolyls like DDBM have robust anticonvulsive activity and have the potential to be developed as novel anticonvulsants.
    Matched MeSH terms: Indoles/administration & dosage*
  5. Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, et al.
    Drug Dev Ind Pharm, 2015;41(10):1674-81.
    PMID: 25496439 DOI: 10.3109/03639045.2014.991400
    Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra.
    Matched MeSH terms: Indoles/administration & dosage*
  6. Tan JR, Chakravarthi S, Judson JP, Haleagrahara N, Segarra I
    Naunyn Schmiedebergs Arch Pharmacol, 2013 Jul;386(7):619-33.
    PMID: 23552887 DOI: 10.1007/s00210-013-0861-4
    Sunitinib is a tyrosine kinase inhibitor for GIST and advanced renal cell carcinoma. Diclofenac is used in cancer pain management. Coadministration may mediate P450 toxicity. We evaluate their interaction, assessing biomarkers ALT, AST, BUN, creatinine, and histopathological changes in the liver, kidney, heart, brain, and spleen. ICR mice (male, n = 6 per group/dose) were administered saline (group A) or 30 mg/kg diclofenac ip (group B), or sunitinib po at 25, 50, 80, 100, 140 mg/kg (group C) or combination of diclofenac (30 mg/kg, ip) and sunitinib (25, 50, 80, 100, 140 mg/kg po). Diclofenac was administered 15 min before sunitinib, mice were euthanized 4 h post-sunitinib dose, and biomarkers and tissue histopathology were assessed. AST was 92.2 ± 8.0 U/L in group A and 159.7 ± 14.6 U/L in group B (p < 0.05); in group C, it the range was 105.1-152.6 U/L, and in group D, it was 156.0-209.5 U/L (p < 0.05). ALT was 48.9 ± 1.6 U/L (group A), 95.1 ± 4.5 U/L (p < 0.05) in group B, and 50.5-77.5 U/L in group C and 82.3-115.6 U/L after coadministration (p < 0.05). Renal function biomarker BUN was 16.3 ± 0.6 mg/dl (group A) and increased to 29.9 ± 2.6 mg/dl in group B (p < 0.05) and it the range was 19.1-33.3 mg/dl (p < 0.05) and 26.9-40.8 mg/dl in groups C and D, respectively. Creatinine was 5.9 pmol/ml in group A; 6.2 pmol/ml in group B (p < 0.01), and the range was 6.0-6.2 and 6.2-6.4 pmol/ml in groups C and D, respectively (p < 0.05 for D). Histopathological assessment (vascular and inflammation damages) showed toxicity in group B (p < 0.05) and mild toxicity in group C. Damage was significantly lesser in group D than group B (p < 0.05). Spleen only showed toxicity after coadministration. These results suggest vascular and inflammation protective effects of sunitinib, not shown after biomarker analysis.
    Matched MeSH terms: Indoles/administration & dosage*
  7. Lim AY, Segarra I, Chakravarthi S, Akram S, Judson JP
    BMC Pharmacol., 2010;10:14.
    PMID: 20950441 DOI: 10.1186/1471-2210-10-14
    BACKGROUND: Sunitinib, a tyrosine kinase inhibitor to treat GIST and mRCC may interact with paracetamol as both undergo P450 mediated biotransformation and P-glycoprotein transport. This study evaluates the effects of sunitinib-paracetamol coadministration on liver and renal function biomarkers and liver, kidney, brain, heart and spleen histopathology. ICR male mice (n = 6 per group/dose) were administered saline (group-A) or paracetamol 500 mg/kg IP (group-B), or sunitinib at 25, 50, 80, 100, 140 mg/kg PO (group-C) or coadministered sunitinib at 25, 50, 80, 100, 140 mg/kg PO and paracetamol IP at fixed dose 500 mg/kg (group-D). Paracetamol was administered 15 min before sunitinib. Mice were sacrificed 4 h post sunitinib administration.
    RESULTS: Group-A serum ALT and AST levels were 14.29 ± 2.31 U/L and 160.37 ± 24.74 U/L respectively and increased to 249.6 ± 222.7 U/L and 377.1 ± 173.6 U/L respectively in group-B; group-C ALT and AST ranged 36.75-75.02 U/L and 204.4-290.3 U/L respectively. After paracetamol coadministration with low sunitinib doses (group-D), ALT and AST concentrations ranged 182.79-221.03 U/L and 259.7-264.4 U/L respectively, lower than group-B. Paracetamol coadministration with high sunitinib doses showed higher ALT and AST values (range 269.6-349.2 U/L and 430.2-540.3 U/L respectively), p < 0.05. Hepatic histopathology showed vascular congestion in group-B; mild congestion in group-C (but lesser than in group-B and D). In group-D, at low doses of sunitinib, lesser damage than in group-B occurred but larger changes including congestion were observed at high sunitinib doses. BUN levels were higher (p < 0.05) for group-B (33.81 ± 5.68 mg/dL) and group-D (range 35.01 ± 6.95 U/L to 52.85 ± 12.53 U/L) compared to group-A (15.60 ± 2.17 mg/dL) and group-C (range 17.50 ± 1.25 U/L to 26.68 ± 6.05 U/L). Creatinine remained unchanged. Renal congestion and necrosis was lower in group-C than group-B but was higher in group-D (p > 0.05). Mild cardiotoxicity occurred in groups B, C and D. Brain vascular congestion occurred at high doses of sunitinib administered alone or with paracetamol. Hepatic and renal biomarkers correlated with histopathology signs.
    CONCLUSIONS: Paracetamol and sunitinib coadministration may lead to dose dependent outcomes exhibiting mild hepatoprotective effect or increased hepatotoxicity. Sunitinib at high doses show renal, cardiac and brain toxicity. Liver and renal function monitoring is recommended.
    Matched MeSH terms: Indoles/administration & dosage
  8. Cheah HY, Gallon E, Dumoulin F, Hoe SZ, Japundžić-Žigon N, Glumac S, et al.
    Mol Pharm, 2018 07 02;15(7):2594-2605.
    PMID: 29763568 DOI: 10.1021/acs.molpharmaceut.8b00132
    We previously developed a new zinc(II) phthalocyanine (ZnPc) derivative (Pc 1) conjugated to poly-L-glutamic acid (PGA) (1-PG) to address the limitations of ZnPc as part of an antitumor photodynamic therapy approach, which include hydrophobicity, phototoxicity, and nonselectivity in biodistribution and tumor targeting. During this study, we discovered that 1-PG possessed high near-infrared (NIR) light absorptivity (λmax = 675 nm), good singlet oxygen generation efficiency in an aqueous environment, and enhanced photocytotoxic efficacy and cancer cell uptake in vitro. In the current study, we discovered that 1-PG accumulated in 4T1 mouse mammary tumors, with a retention time of up to 48 h. Furthermore, as part of an antitumor PDT, low dose 1-PG (2 mg of Pc 1 equivalent/kg) induced a greater tumor volume reduction (-74 ± 5%) when compared to high dose ZnPc (8 mg/kg, -50 ± 12%). At higher treatment doses (8 mg of Pc 1 equivalent/kg), 1-PG reduced tumor volume maximally (-91 ± 6%) and suppressed tumor size to a minimal level for up to 15 days. The kidney, liver, and lungs of the mice treated with 1-PG (both low and high doses) were free from 4T1 tumor metastasis at the end of the study. Telemetry-spectral-echocardiography studies also revealed that PGA (65 mg/kg) produced insignificant changes to the cardiovascular physiology of Wistar-Kyoto rats when administered in vivo. Results indicate that PGA displays an excellent cardiovascular safety profile, underlining its suitability for application as a nanodrug carrier in vivo. These current findings indicate the potential of 1-PG as a useful photosensitizer candidate for clinical PDT.
    Matched MeSH terms: Indoles/administration & dosage*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links