Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Liew KJ, Lim L, Woo HY, Chan KG, Shamsir MS, Goh KM
    Int J Biol Macromol, 2018 Aug;115:1094-1102.
    PMID: 29723622 DOI: 10.1016/j.ijbiomac.2018.04.156
    Beta-glucosidase (BGL) is an important industrial enzyme for food, waste and biofuel processing. Jeotgalibacillus is an understudied halophilic genus, and no beta-glucosidase from this genus has been reported. A novel beta-glucosidase gene (1344 bp) from J. malaysiensis DSM 28777T was cloned and expressed in E. coli. The recombinant protein, referred to as BglD5, consists of a total 447 amino acids. BglD5 purified using a Ni-NTA column has an apparent molecular mass of 52 kDa. It achieved the highest activity at pH 7 and 65 °C. The activity and stability were increased when CaCl2 was supplemented to the enzyme. The enzyme efficiently hydrolyzed salicin and (1 → 4)-beta-glycosidic linkages such as in cellobiose, cellotriose, cellotetraose, cellopentose, and cellohexanose. Similar to many BGLs, BglD5 was not active towards polysaccharides such as Avicel, carboxymethyl cellulose, Sigmacell cellulose 101, alpha-cellulose and xylan. When BglD5 blended with Cellic® Ctec2, the total sugars saccharified from oil palm empty fruit bunches (OPEFB) was enhanced by 4.5%. Based on sequence signatures and tree analyses, BglD5 belongs to the Glycoside Hydrolase family 1. This enzyme is a novel beta-glucosidase attributable to its relatively low sequence similarity with currently known beta-glucosidases, where the closest characterized enzyme is the DT-Bgl from Anoxybacillus sp. DT3-1.
    Matched MeSH terms: beta-Glucosidase/genetics; beta-Glucosidase/isolation & purification*; beta-Glucosidase/metabolism*; beta-Glucosidase/chemistry
  2. Bahaman AH, Wahab RA, Abdul Hamid AA, Abd Halim KB, Kaya Y
    J Biomol Struct Dyn, 2021 Apr;39(7):2628-2641.
    PMID: 32248752 DOI: 10.1080/07391102.2020.1751713
    Literature has shown that oil palm leaves (OPL) can be transformed into nanocellulose (NC) by fungal lignocellulosic enzymes, particularly those produced by the Trichoderma species. However, mechanism of β-glucosidase and xylanase selectivity to degrade lignin, hemicellulose and cellulose in OPL for NC production remains relatively vague. The study aimed to comprehend this aspect by an in silico approach of molecular docking, molecular dynamics (MD) simulation and Molecular-mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, to compare interactions between the β-glucosidase- and xylanase from Trichoderma asperellum UC1 in complex with each substrate. Molecular docking of the enzyme-substrate complex showed residues Glu165-Asp226-Glu423 and Arg155-Glu210-Ser160 being the likely catalytic residues of β-glucosidase and xylanase, respectively. The binding affinity of β-glucosidase for the substrates are as follows: cellulose (-8.1 kcal mol-1) > lignin (-7.9 kcal mol-1) > hemicellulose (-7.8 kcal mol-1), whereas, xylanase showed a corresponding preference for; hemicellulose (-6.7 kcal mol-1) > cellulose (-5.8 kcal mol-1) > lignin (-5.7 kcal mol-1). Selectivity of both enzymes was reiterated by MD simulations where interactions between β-glucosidase-cellulose and xylanase-hemicellulose were the strongest. Notably low free-binding energy (ΔGbind) of β-glucosidase and xylanase in complex with cellulose (-207.23 +/- 47.13 kJ/mol) and hemicellulose (-131.48 +/- 24.57 kJ/mol) were observed, respectively. The findings thus successfully identified the cellulose component selectivity of the polymer-acting β-glucosidase and xylanase of T. asperellum UC1.Communicated by Ramaswamy H. Sarma.
    Matched MeSH terms: beta-Glucosidase/metabolism
  3. Ezeilo UR, Lee CT, Huyop F, Zakaria II, Wahab RA
    J Environ Manage, 2019 Aug 01;243:206-217.
    PMID: 31096173 DOI: 10.1016/j.jenvman.2019.04.113
    Production of cellulases and xylanase by a novel Trichoderma asperellum UC1 (GenBank accession no. MF774876) under solid state fermentation (SSF) of raw oil palm frond leaves (OPFL) was optimized. Under optimum fermentation parameters (30 °C, 60-80% moisture content, 2.5 × 106 spores/g inoculum size) maximum CMCase, FPase, β-glucosidase and xylanase activity were recorded at 136.16 IU/g, 26.03 U/g, 130.09 IU/g and 255.01 U/g, respectively. Cellulases and xylanase were produced between a broad pH range of pH 6.0-12.0. The enzyme complex that comprised of four endo-β-1,4-xylanases and endoglucanases, alongside exoglucanase and β-glucosidase showed thermophilic and acidophilic characteristics at 50-60 °C and pH 3.0-4.0, respectively. Glucose (16.87 mg/g) and fructose (18.09 mg/g) were among the dominant sugar products from the in situ hydrolysis of OPFL, aside from cellobiose (105.92 mg/g) and xylose (1.08 mg/g). Thermal and pH stability tests revealed that enzymes CMCase, FPase, β-glucosidase and xylanase retained 50% residual activities for up to 15.18, 4.06, 17.47 and 15.16 h of incubation at 60 °C, as well as 64.59, 25.14, 68.59 and 19.20 h at pH 4.0, respectively. Based on the findings, it appeared that the unique polymeric structure of raw OPFL favored cellulases and xylanase productions.
    Matched MeSH terms: beta-Glucosidase
  4. Mazlan NS, Ahmad Khairudin NB
    J Biomol Struct Dyn, 2016 Jul;34(7):1486-94.
    PMID: 26261863 DOI: 10.1080/07391102.2015.1081570
    Paenibacillus polymyxa β-glucosidase B (BglB), belongs to a GH family 1, is a monomeric enzyme that acts as an exo-β-glucosidase hydrolysing cellobiose and cellodextrins of higher degree of polymerization using retaining mechanism. A molecular dynamics (MD) simulation was performed at 300 K under periodic boundary condition for 5 ns using the complexes structure obtained from previous docking study, namely BglB-Beta-d-glucose and BglB-Cellobiose. From the root-mean-square deviation analysis, both enzyme complexes were reported to deviate from the initial structure in the early part of the simulation but it was stable afterwards. The root-mean-square fluctuation analysis revealed that the most flexible regions comprised of the residues from 26 to 29, 43 to 53, 272 to 276, 306 to 325 and 364 to 367. The radius of gyration analysis had shown the structure of BglB without substrate became more compact towards the end of the simulation compare to other two complexes. The residues His122 and Trp410 were observed to form stable hydrogen bond with occupancy higher than 10%. In conclusion, the behaviour of BglB enzyme towards the substrate binding was successfully explored via MD simulation approaches.
    Matched MeSH terms: beta-Glucosidase/metabolism; beta-Glucosidase/chemistry*
  5. Abdul Karim MH, Lam MQ, Chen SJ, Yahya A, Shahir S, Shamsir MS, et al.
    Arch Microbiol, 2020 Nov;202(9):2591-2597.
    PMID: 32607725 DOI: 10.1007/s00203-020-01967-z
    To date, the genus Parvularcula consists of 6 species and no potential application of this genus was reported. Current study presents the genome sequence of Parvularcula flava strain NH6-79 T and its cellulolytic enzyme analysis. The assembled draft genome of strain NH6-79 T consists of 9 contigs and 7 scaffolds with 3.68 Mbp in size and GC content of 59.87%. From a total of 3,465 genes predicted, 96 of them are annotated as glycoside hydrolases (GHs). Within these GHs, 20 encoded genes are related to cellulosic biomass degradation, including 12 endoglucanases (5 GH10, 4 GH5, and 3 GH51), 2 exoglucanases (GH9) and 6 β-glucosidases (GH3). In addition, highest relative enzyme activities (endoglucanase, exoglucanase, and β-glucosidase) were observed at 27th hour when the strain was cultured in the carboxymethyl cellulose/Avicel®-containing medium for 45 h. The combination of genome analysis with experimental studies indicated the ability of strain NH6-79 T to produce extracellular endoglucanase, exoglucanase, and β-glucosidase. These findings suggest the potential of Parvularcula flava strain NH6-79 T in cellulose-containing biomass degradation and that the strain could be used in cellulosic biorefining process.
    Matched MeSH terms: beta-Glucosidase/genetics; beta-Glucosidase/metabolism
  6. Nutho B, Pengthaisong S, Tankrathok A, Lee VS, Ketudat Cairns JR, Rungrotmongkol T, et al.
    Biomolecules, 2020 Jun 15;10(6).
    PMID: 32549280 DOI: 10.3390/biom10060907
    β-Glucosidases and β-mannosidases hydrolyze substrates that differ only in the epimer of the nonreducing terminal sugar moiety, but most such enzymes show a strong preference for one activity or the other. Rice Os3BGlu7 and Os7BGlu26 β-glycosidases show a less strong preference, but Os3BGlu7 and Os7BGlu26 prefer glucosides and mannosides, respectively. Previous studies of crystal structures with glucoimidazole (GIm) and mannoimidazole (MIm) complexes and metadynamic simulations suggested that Os7BGlu26 hydrolyzes mannosides via the B2,5 transition state (TS) conformation preferred for mannosides and glucosides via their preferred 4H3/4E TS conformation. However, MIm is weakly bound by both enzymes. In the present study, we found that MIm was not bound in the active site of crystallized Os3BGlu7, but GIm was tightly bound in the -1 subsite in a 4H3/4E conformation via hydrogen bonds with the surrounding residues. One-microsecond molecular dynamics simulations showed that GIm was stably bound in the Os3BGlu7 active site and the glycone-binding site with little distortion. In contrast, MIm initialized in the B2,5 conformation rapidly relaxed to a E3/4H3 conformation and moved out into a position in the entrance of the active site, where it bound more stably despite making fewer interactions. The lack of MIm binding in the glycone site in protein crystals and simulations implies that the energy required to distort MIm to the B2,5 conformation for optimal active site residue interactions is sufficient to offset the energy of those interactions in Os3BGlu7. This balance between distortion and binding energy may also provide a rationale for glucosidase versus mannosidase specificity in plant β-glycosidases.
    Matched MeSH terms: beta-Glucosidase/metabolism*; beta-Glucosidase/chemistry*
  7. Shukor H, Abdeshahian P, Al-Shorgani NK, Hamid AA, Rahman NA, Kalil MS
    Bioresour Technol, 2016 Feb;202:206-13.
    PMID: 26710346 DOI: 10.1016/j.biortech.2015.11.078
    In this work, hydrolysis of cellulose and hemicellulose content of palm kernel cake (PKC) by different types of hydrolytic enzymes was studied to evaluate monomeric sugars released for production of biobutanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in acetone-butanol-ethanol (ABE) fermentation. Experimental results revealed that when PKC was hydrolyzed by mixed β-glucosidase, cellulase and mannanase, a total simple sugars of 87.81±4.78 g/L were produced, which resulted in 3.75±0.18 g/L butanol and 6.44±0.43 g/L ABE at 168 h fermentation. In order to increase saccharolytic efficiency of enzymatic treatment, PKC was pretreated by liquid hot water before performing enzymatic hydrolysis. Test results showed that total reducing sugars were enhanced to 97.81±1.29 g/L with elevated production of butanol and ABE up to 4.15±1.18 and 7.12±2.06 g/L, respectively which represented an A:B:E ratio of 7:11:1.
    Matched MeSH terms: beta-Glucosidase
  8. Mohamad Sobri MF, Abd-Aziz S, Abu Bakar FD, Ramli N
    Int J Mol Sci, 2020 Jun 04;21(11).
    PMID: 32512945 DOI: 10.3390/ijms21114035
    β-glucosidases (Bgl) are widely utilized for releasing non-reducing terminal glucosyl residues. Nevertheless, feedback inhibition by glucose end product has limited its application. A noticeable exception has been found for β-glucosidases of the glycoside hydrolase (GH) family 1, which exhibit tolerance and even stimulation by glucose. In this study, using local isolate Trichoderma asperellum UPM1, the gene encoding β-glucosidase from GH family 1, hereafter designated as TaBgl2, was isolated and characterized via in-silico analyses. A comparison of enzyme activity was subsequently made by heterologous expression in Escherichia coli BL21(DE3). The presence of N-terminal signature, cis-peptide bonds, conserved active site motifs, non-proline cis peptide bonds, substrate binding, and a lone conserved stabilizing tryptophan (W) residue confirms the identity of Trichoderma sp. GH family 1 β-glucosidase isolated. Glucose tolerance was suggested by the presence of 14 of 22 known consensus residues, along with corresponding residues L167 and P172, crucial in the retention of the active site's narrow cavity. Retention of 40% of relative hydrolytic activity on ρ-nitrophenyl-β-D-glucopyranoside (ρNPG) in a concentration of 0.2 M glucose was comparable to that of GH family 1 β-glucosidase (Cel1A) from Trichoderma reesei. This research thus underlines the potential in the prediction of enzymatic function, and of industrial importance, glucose tolerance of family 1 β-glucosidases following relevant in-silico analyses.
    Matched MeSH terms: beta-Glucosidase
  9. Tan IS, Lee KT
    Bioresour Technol, 2015 May;184:386-94.
    PMID: 25465785 DOI: 10.1016/j.biortech.2014.10.146
    A novel concept for the synthesis of a stable polymer hybrid matrix bead was developed in this study. The beads were further applied for enzyme immobilization to produce stable and active biocatalysts with low enzyme leakage, and high immobilization efficiency, enzyme activity, and recyclability. The immobilization conditions, including PEI concentration, activation time and pH of the PEI solution were investigated and optimized. All formulated beads were characterized for its functionalized groups, composition, surface morphology and thermal stability. Compared with the free β-glucosidase, the immobilized β-glucosidase on the hybrid matrix bead was able to tolerate broader range of pH values and higher reaction temperature up to 60 °C. The immobilized β-glucosidase was then used to hydrolyse pretreated macroalgae cellulosic residue (MCR) for the production of reducing sugar and a hydrolysis yield of 73.4% was obtained. After repeated twelve runs, immobilized β-glucosidase retained about 75% of its initial activity.
    Matched MeSH terms: beta-Glucosidase/metabolism*
  10. Harun R, Danquah MK, Thiruvenkadam S
    Biomed Res Int, 2014;2014:435631.
    PMID: 24971327 DOI: 10.1155/2014/435631
    Effective optimization of microalgae-to-bioethanol process systems hinges on an in-depth characterization of key process parameters relevant to the overall bioprocess engineering. One of the such important variables is the biomass particle size distribution and the effects on saccharification levels and bioethanol titres. This study examined the effects of three different microalgal biomass particle size ranges, 35 μm ≤ x ≤ 90 μm, 125 μm ≤ x ≤ 180 μm, and 295 μm ≤ x ≤ 425 μm, on the degree of enzymatic hydrolysis and bioethanol production. Two scenarios were investigated: single enzyme hydrolysis (cellulase) and double enzyme hydrolysis (cellulase and cellobiase). The glucose yield from biomass in the smallest particle size range (35 μm ≤ x ≤ 90 μm) was the highest, 134.73 mg glucose/g algae, while the yield from biomass in the larger particle size range (295 μm ≤ x ≤ 425 μm) was 75.45 mg glucose/g algae. A similar trend was observed for bioethanol yield, with the highest yield of 0.47 g EtOH/g glucose obtained from biomass in the smallest particle size range. The results have shown that the microalgal biomass particle size has a significant effect on enzymatic hydrolysis and bioethanol yield.
    Matched MeSH terms: beta-Glucosidase/metabolism
  11. Yeo SK, Liong MT
    J Agric Food Chem, 2011 Feb 9;59(3):885-97.
    PMID: 21235273 DOI: 10.1021/jf103974d
    The objective of the present study was to evaluate the effects of ultrasound on the growth of probiotics and bioconversion of isoflavones in prebiotic-soymilk. Previous studies have shown that ultrasound elevated microbial enzymatic activity and growth by altering cellular membranes. The growth of probiotics was significantly decreased (P < 0.05) immediately after ultrasound treatment, attributed to membrane permeabilization, cell lysis, and membrane lipid peroxidation upon ultrasound treatment. The ultrasound treatment also caused alteration at the acyl chain, polar head, and interface region of the probiotic membrane phospholipid bilayers. The cells treated with ultrasound showed recovery from injury with subsequent increase in growth upon fermentation in soymilk (P < 0.05). Ultrasound treatment at 100 W for 2 and 3 min also enhanced (P < 0.05) the intracellular and extracellular β-glucosidase activity of probiotics, leading to increased (P < 0.05) bioconversion of glucosides to aglycones in the prebiotic-soymilk. Our present study illustrated that ultrasound treatment could produce bioactive synbiotic-soymilk with increased concentrations of bioactive aglycones.
    Matched MeSH terms: beta-Glucosidase/metabolism
  12. Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Jun 03;25(11).
    PMID: 32503356 DOI: 10.3390/molecules25112607
    Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
    Matched MeSH terms: beta-Glucosidase/metabolism*
  13. Mohammadi S, Parvizpour S, Razmara J, Abu Bakar FD, Illias RM, Mahadi NM, et al.
    Interdiscip Sci, 2018 Mar;10(1):157-168.
    PMID: 27475956 DOI: 10.1007/s12539-016-0180-9
    We report a detailed structural analysis of the psychrophilic exo-β-1,3-glucanase (GaExg55) from Glaciozyma antarctica PI12. This study elucidates the structural basis of exo-1,3-β-1,3-glucanase from this psychrophilic yeast. The structural prediction of GaExg55 remains a challenge because of its low sequence identity (37 %). A 3D model was constructed for GaExg55. Threading approach was employed to determine a suitable template and generate optimal target-template alignment for establishing the model using MODELLER9v15. The primary sequence analysis of GaExg55 with other mesophilic exo-1,3-β-glucanases indicated that an increased flexibility conferred to the enzyme by a set of amino acids substitutions in the surface and loop regions of GaExg55, thereby facilitating its structure to cold adaptation. A comparison of GaExg55 with other mesophilic exo-β-1,3-glucanases proposed that the catalytic activity and structural flexibility at cold environment were attained through a reduced amount of hydrogen bonds and salt bridges, as well as an increased exposure of the hydrophobic side chains to the solvent. A molecular dynamics simulation was also performed using GROMACS software to evaluate the stability of the GaExg55 structure at varying low temperatures. The simulation result confirmed the above findings for cold adaptation of the psychrophilic GaExg55. Furthermore, the structural analysis of GaExg55 with large catalytic cleft and wide active site pocket confirmed the high activity of GaExg55 to hydrolyze polysaccharide substrates.
    Matched MeSH terms: Glucan 1,3-beta-Glucosidase/chemistry*
  14. Nazarpour F, Abdullah DK, Abdullah N, Motedayen N, Zamiri R
    Biomed Res Int, 2013;2013:268349.
    PMID: 24167813 DOI: 10.1155/2013/268349
    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%). The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.
    Matched MeSH terms: beta-Glucosidase/metabolism
  15. Al-Qassab AA, Zakaria MR, Yunus R, Salleh MAM, Mokhtar MN
    Int J Biol Macromol, 2024 Sep;276(Pt 2):134030.
    PMID: 39038578 DOI: 10.1016/j.ijbiomac.2024.134030
    This study investigates the synthesis of (hemi)cellulolytic enzymes, including endoglucanase (CMCase), xylanase, and β-glucosidase, employing Trichoderma reesei RUT-C30 and deoiled oil palm mesocarp fiber (OPMF) through solid-state fermentation (SSF). The objective was to determine the optimal process conditions for achieving high enzyme activities through a one-factor-at-a-time approach. The study primarily focused on the impact of the solid-to-liquid ratio, incubation period, initial pH, and temperature on enzyme activity. The effects of OPMF pretreatment, particularly deoiling and fortification, were explored. This approach significantly improved enzyme activity levels compared to the initial conditions, with CMCase increasing by 111.6 %, xylanase by 665.2 %, and β-Glucosidase by 1678.1 %. Xylanase and β-glucosidase activities, peaking at 1346.75 and 9.89 IU per gram dry substrate (GDS), respectively, under optimized conditions (1:4 ratio, pH 7.5, 20 °C, 9-day incubation). With lower moisture levels, CMCase reached its maximum activity of 227.84 IU/GDS. The study highlights how important it is for agro-industrial byproducts to support environmentally sustainable practices in the palm oil industry. It also emphasizes how differently each enzyme reacts to changes in process parameters.
    Matched MeSH terms: beta-Glucosidase/metabolism
  16. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A
    Front Microbiol, 2015;6:1317.
    PMID: 26635778 DOI: 10.3389/fmicb.2015.01317
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.
    Matched MeSH terms: beta-Glucosidase
  17. Mirghani, M.E.S., Liyana, Y., Parveen, J.
    MyJurnal
    Diseases such as diabetes mellitus and gout are among the chronic diseases affecting worldwide population. Investigation is required to find the alternative approaches to treat these chronic diseases, such as plant based medicine. In this study, lemongrass (Cymbopogan citratus) was chosen and examined on the basis of their usage in traditional medicines throughout Southeast Asia. GCMS analysis revealed the major constituents of the lemongrass essential oil which compromise 67.769% and 67.328% of the total oil respectively. Total phenolic content of the essential oil was analyzed by Folin Ciocalteau method and the results indicated that highest amount of phenolic content was obtained from essential oil extracted from lemongrasses stalk, with phenolic concentration of 2100.769 mg/l GAE. Anti oxidant activity was examined by DPPH scavenging test and the highest inhibition was obtained by essential oil extracted from lemongrass stalk (89.5%). β-glucosidase inhibition assay was carried out using an in-vitro model for anti diabetic test and lemongrass stalk essential oil showed highest degree of inhibitory activity (89.63%). Anti gout test was examined by xanthine oxidase inhibition (XOI) assay with the maximum percentage of xanthine oxidase inhibition of 81.34% obtained from lemongrass stalk essential oil.
    Matched MeSH terms: beta-Glucosidase
  18. Liew KJ, Teo SC, Shamsir MS, Sani RK, Chong CS, Chan KG, et al.
    3 Biotech, 2018 Aug;8(8):376.
    PMID: 30105201 DOI: 10.1007/s13205-018-1391-z
    Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, β-glucosidase, and β-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.
    Matched MeSH terms: beta-Glucosidase
  19. Hussin NA, Najimudin N, Ab Majid AH
    Heliyon, 2019 Dec;5(12):e02969.
    PMID: 31872129 DOI: 10.1016/j.heliyon.2019.e02969
    The subterranean termite Globitermus sulphureus is an important Southeast Asian pest with limited genomic resources that causes damages to agriculture crops and building structures. Therefore, the main goal of this study was to survey the G. sulphureus transcriptome composition. Here, we performed de novo transcriptome for G. sulphureus workers' heads using Illumina HiSeq paired-end sequencing technology. A total of 88, 639, 408 clean reads were collected and assembled into 243, 057 transcripts and 193, 344 putative genes. The transcripts were annotated with the Trinotate pipeline. In total, 27, 061 transcripts were successfully annotated using BLASTX against the SwissProt database and 17, 816 genes were assigned to 47, 598 GO terms. We classified 14, 223 transcripts into COG classification, resulting in 25 groups of functional annotations. Next, a total of 12, 194 genes were matched in the KEGG pathway and 392 metabolic pathways were predicted based on the annotation. Moreover, we detected two endogenous cellulases in the sequences. The RT-qPCR analysis showed that there were significant differences in the expression levels of two genes β-glucosidase and endo-β-1,4-glucanase between worker and soldier heads of G. sulphureus. This is the first study to characterize the complete head transcriptome of a higher termite G. sulphureus using a high-throughput sequencing. Our study may provide an overview and comprehensive molecular resource for comparative studies of the transcriptomics and genomics of termites.
    Matched MeSH terms: beta-Glucosidase
  20. Salihu A, Abbas O, Sallau AB, Alam MZ
    3 Biotech, 2015 Dec;5(6):1101-1106.
    PMID: 28324400 DOI: 10.1007/s13205-015-0294-5
    Different agricultural residues were considered in this study for their ability to support cellulolytic enzyme production by Aspergillus niger. A total of eleven agricultural residues including finger millet hulls, sorghum hulls, soybean hulls, groundnut husk, banana peels, corn stalk, cassava peels, sugarcane bagasse, saw dust, rice straw and sheanut cake were subjected to three pretreatment (acid, alkali and oxidative) methods. All the residues supported the growth and production of cellulases by A. niger after 96 h of incubation. Maximum cellulase production was found in alkali-treated soybean hulls with CMCase, FPase and β-glucosidase yields of 9.91 ± 0.04, 6.20 ± 0.13 and 5.69 ± 0.29 U/g, respectively. Further studies in assessing the potential of soybean hulls are being considered to optimize the medium composition and process parameters for enhanced cellulase production.
    Matched MeSH terms: beta-Glucosidase
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links