Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Chou LY, Clarke CM, Dykes GA
    Arch Microbiol, 2014 Oct;196(10):709-17.
    PMID: 25005571 DOI: 10.1007/s00203-014-1011-1
    Nepenthes pitcher plants produce modified jug-shaped leaves to attract, trap and digest insect prey. We used 16S rDNA cloning and sequencing to compare bacterial communities in pitcher fluids of each of three species, namely Nepenthes ampullaria, Nepenthes gracilis and Nepenthes mirabilis, growing in the wild. In contrast to previous greenhouse-based studies, we found that both opened and unopened pitchers harbored bacterial DNA. Pitchers of N. mirabilis had higher bacterial diversity as compared to other Nepenthes species. The composition of the bacterial communities could be different between pitcher types for N. mirabilis (ANOSIM: R = 0.340, p < 0.05). Other Nepenthes species had similar bacterial composition between pitcher types. SIMPER showed that more than 50 % of the bacterial taxa identified from the open pitchers of N. mirabilis were not found in other groups. Our study suggests that bacteria in N. mirabilis are divided into native and nonnative groups.
  2. Li D, Midgley DJ, Ross JP, Oytam Y, Abell GC, Volk H, et al.
    Arch Microbiol, 2012 Jun;194(6):513-23.
    PMID: 22245906 DOI: 10.1007/s00203-012-0788-z
    Microbial diversity within formation water and oil from two compartments in Bokor oil reservoir from a Malaysian petroleum oil field was examined. A total of 1,056 16S rRNA gene clones were screened from each location by amplified ribosomal DNA restriction analysis. All samples were dominated by clones affiliated with Marinobacter, some novel Deferribacteraceae genera and various clones allied to the Methanococci. In addition, either Marinobacterium- or Pseudomonas-like operational taxonomic units were detected from either compartment. A systematic comparison with the existing pertinent studies was undertaken by analysing the microbial amplicons detected and the PCR primers used. The analyses demonstrated that bacterial communities were site specific, while Archaea co-occurred more frequently. Amplicons related to Marinobacter, Marinobacterium and Pseudomonas were detected in a number of the studies examined, suggesting they may be ubiquitous members in oil reservoirs. Further analysis of primers used in those studies suggested that most primer pairs had fairly broad but low matches across the bacterial and archaeal domains, while a minority had selective matches to certain taxa or low matches to all the microbial taxa tested. Thus, it indicated that primers may play an important role in determining which taxa would be detected.
  3. Salleh SF, Kamaruddin A, Uzir MH, Karim KA, Mohamed AR
    Arch Microbiol, 2016 Mar;198(2):101-13.
    PMID: 26521065 DOI: 10.1007/s00203-015-1164-6
    This work investigates the effect of heterocyst toward biohydrogen production by A. variabilis. The heterocyst frequency was artificially promoted by adding an amino acid analog, in this case DL-7-azatryptophan into the growth medium. The frequency of heterocyst differentiation was found to be proportional to the concentration of azatryptophan (0-25 µM) in the medium. Conversely, the growth and nitrogenase activity were gradually suppressed. In addition, there was also a distinct shortening of the cells filaments and detachment of heterocyst from the vegetative cells. Analysis on the hydrogen production performance revealed that both the frequency and distribution of heterocyst in the filaments affected the rate of hydrogen production. The highest hydrogen production rate and yield (41 µmol H2 mg chl a(-1) h(-1) and 97 mL H2 mg chl a(-1), respectively) were achieved by cells previously grown in 15 µM of azatryptophan with 14.5 % of heterocyst frequency. The existence of more isolated heterocyst has been shown to cause a relative loss in nitrogenase activity thus lowering the hydrogen production rate.
  4. Abdul Karim MH, Lam MQ, Chen SJ, Yahya A, Shahir S, Shamsir MS, et al.
    Arch Microbiol, 2020 Nov;202(9):2591-2597.
    PMID: 32607725 DOI: 10.1007/s00203-020-01967-z
    To date, the genus Parvularcula consists of 6 species and no potential application of this genus was reported. Current study presents the genome sequence of Parvularcula flava strain NH6-79 T and its cellulolytic enzyme analysis. The assembled draft genome of strain NH6-79 T consists of 9 contigs and 7 scaffolds with 3.68 Mbp in size and GC content of 59.87%. From a total of 3,465 genes predicted, 96 of them are annotated as glycoside hydrolases (GHs). Within these GHs, 20 encoded genes are related to cellulosic biomass degradation, including 12 endoglucanases (5 GH10, 4 GH5, and 3 GH51), 2 exoglucanases (GH9) and 6 β-glucosidases (GH3). In addition, highest relative enzyme activities (endoglucanase, exoglucanase, and β-glucosidase) were observed at 27th hour when the strain was cultured in the carboxymethyl cellulose/Avicel®-containing medium for 45 h. The combination of genome analysis with experimental studies indicated the ability of strain NH6-79 T to produce extracellular endoglucanase, exoglucanase, and β-glucosidase. These findings suggest the potential of Parvularcula flava strain NH6-79 T in cellulose-containing biomass degradation and that the strain could be used in cellulosic biorefining process.
  5. Teoh MC, Furusawa G, Veera Singham G
    Arch Microbiol, 2021 Jul;203(5):1891-1915.
    PMID: 33634321 DOI: 10.1007/s00203-021-02230-9
    Insects and bacteria are the most widespread groups of organisms found in nearly all habitats on earth, establishing diverse interactions that encompass the entire range of possible symbiotic associations from strict parasitism to obligate mutualism. The complexity of their interactions is instrumental in shaping the roles of insects in the environment, meanwhile ensuring the survival and persistence of the associated bacteria. This review aims to provide detailed insight on the multifaceted symbiosis between one of the most versatile bacterial genera, Pseudomonas (Gammaproteobacteria: Pseudomonadaceae) and a diverse group of insect species. The Pseudomonas engages with varied interactions with insects, being either a pathogen or beneficial endosymbiont, as well as using insects as vectors. In addition, this review also provides updates on existing and potential applications of Pseudomonas and their numerous insecticidal metabolites as biocontrol agents against pest insects for the improvement of integrated pest management strategies. Here, we have summarized several known modes of action and the virulence factors of entomopathogenic Pseudomonas strains essential for their pathogenicity against insects. Meanwhile, the beneficial interactions between pseudomonads and insects are currently limited to a few known insect taxa, despite numerous studies reporting identification of pseudomonads in the guts and haemocoel of various insect species. The vector-symbiont association between pseudomonads and insects can be diverse from strict phoresy to a role switch from commensalism to parasitism following a dose-dependent response. Overall, the pseudomonads appeared to have evolved independently to be either exclusively pathogenic or beneficial towards insects.
  6. Dinesh B, Furusawa G, Amirul AA
    Arch Microbiol, 2017 Jan;199(1):63-67.
    PMID: 27506901 DOI: 10.1007/s00203-016-1275-8
    A Gram-staining-negative, aerobic, rod-shaped, yellow-orange-pigmented, gliding bacterium, designated as strain ST2L12(T), was isolated from estuarine mangrove sediment from Matang Mangrove Forest, Perak, Malaysia. Strain ST2L12(T) grew at 15-39 °C, pH 6-8 and in 1-6 % (w/v) NaCl. This strain was able to degrade xylan and casein. 16S rRNA gene sequence analysis showed 95.3-92.8 % similarity to members of the genera Mangrovimonas, Meridianimaribacter, Sediminibacter, Gaetbulibacter and Hoppeia. Phylogenetic analysis indicated that it belonged to the family Flavobacteriaceae. Respiratory quinone present was menaquinone-6 (MK-6), and the DNA G+C content was 38.3 mol%. The predominant fatty acids were iso-C15:0, iso-C15:1, C15:0 and iso-C17:0 3-OH. Moreover, previous genome comparison study showed that the genome of ST2L12(T) is 1.4 times larger compared to its closest relative, Mangrovimonas yunxiaonensis LYYY01(T). Phenotypic, fatty acid, 16S rRNA gene sequence and previous genome data indicate that strain ST2L12(T) represents a novel species of the genus Mangrovimonas in the family Flavobacteriaceae, for which the name Mangrovimonas xylaniphaga sp. nov. is proposed. The type strain of Mangrovimonas xylaniphaga is ST2L12(T) (=LMG 28914(T)=JCM 30880(T)).
  7. Devaraj K, Tan GYA, Chan KG
    Arch Microbiol, 2017 Aug;199(6):897-906.
    PMID: 28364274 DOI: 10.1007/s00203-017-1371-4
    In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.
  8. Priya K, Sulaiman J, How KY, Yin WF, Chan KG
    Arch Microbiol, 2018 Sep;200(7):1135-1142.
    PMID: 29796703 DOI: 10.1007/s00203-018-1526-y
    Quorum sensing (QS) is a term used to describe cell-to-cell communication that enables bacteria to orchestrate group behaviours according to density of bacterial cells. In Gram-negative bacteria, this signalling system is widely known to regulate a variety of different phenotypes such as antibiotic production and biofilm formation. In this study, we report the production of N-acyl homoserine lactones produced by Chromobacterium haemolyticum strain KM2, a bacterium isolated from a river water of a reserved tropical national park. Preliminary screening of QS activity using biosensor reporter assays indicated that C. haemolyticum strain KM2 produces both short- and long-chain AHLs. Analysis with high-resolution liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed the production of three AHLs by strain KM2: N-octanoyl-L-homoserine lactone (C8-HSL), N-dodecanoyl-L-homoserine lactone (C12-HSL), and N-3-oxo-dodecanoyl-L-homoserine lactone (OC12-HSL). This bacterial isolate also exhibited strong β-haemolytic activity. To the best of our knowledge, this is the first documentation of QS activity and multiple AHLs production by C. haemolyticum strain KM2.
  9. Zin NM, Al-Shaibani MM, Jalil J, Sukri A, Al-Maleki AR, Sidik NM
    Arch Microbiol, 2020 Oct;202(8):2083-2092.
    PMID: 32494868 DOI: 10.1007/s00203-020-01896-x
    Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.
  10. Bharathi D, Nandagopal JGT, Ranjithkumar R, Gupta PK, Djearamane S
    Arch Microbiol, 2022 Feb 14;204(3):169.
    PMID: 35157149 DOI: 10.1007/s00203-022-02767-3
    The coloured effluents produced from different industries, such as textile, plastics, printing, cosmetics, leather and paper, are extremely toxic and a tremendous threat to the aquatic organisms and human beings. The removal of coloured dye pollutants from the aqueous environment is a great challenge and a pressing task. The growing demand for low-cost and efficient treatment approaches has given rise to alternative and eco-friendly methods, such as biodegradation and microbial remediation. This work summarizes the overview and current research on the remediation of dye pollutants from the aqueous environment by microbial bio-sorbents, such as bacteria, fungi, algae, and yeast. In addition, dye degradation capabilities of microbial enzymes have been highlighted and discussed. Further, the influence of various experimental parameters, such as temperature, pH, and concentrations of nutrients, and dye, has been summarized. The proposed mechanism for dye removal by microorganisms is also discussed. The object of this review is to provide a state-of-the-art of microbial remediation technologies in eliminating dye pollutants from water resources.
  11. Rahman RNZRA, Latip W, Adlan NA, Sabri S, Ali MSM
    Arch Microbiol, 2022 Nov 12;204(12):701.
    PMID: 36370212 DOI: 10.1007/s00203-022-03316-8
    Waxy crude oil is a problem to the oil and gas industry because wax deposition in pipelines reduces the quality of the crude oil. Currently, the industry uses chemicals to solve the problem but it is not environmentally friendly. As an alternative, the biodegradation approach is one of the options. Previously eleven thermophilic bacteria were isolated and exhibited high ability to degrade hydrocarbon up to 70% of waxy crude oil. However, despite the successful study on these single bacteria strains, it is believed that biodegradation of paraffin wax requires more than a single species. Five consortia were developed based on the biodegradation efficiency of 11 bacterial strains. Consortium 3 showed the highest biodegradation (77.77%) with more long-chain alkane degraded throughout the incubation compared to other consortia. Enhancement of hydrocarbon degradation was observed for all consortia especially in long chain alkane (C18-C40). Consortium 3 exhibited higher alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase activities. Moreover, the dominant bacteria in the consortia were determined by denaturing gradient gel electrophoresis (DGGE), which showed the domination of genera Geobacillus, Parageobacillus, and Anoxybacillus. It can be concluded that the bacterial consortia showed higher biodegradation and improved degrading more long-chain hydrocarbon compared to a single isolate.
  12. Zamakhaev M, Grigorov A, Bespyatykh J, Azhikina T, Goncharenko A, Shumkov M
    Arch Microbiol, 2022 Dec 15;205(1):28.
    PMID: 36520276 DOI: 10.1007/s00203-022-03363-1
    Mycobacterium tuberculosis is an extremely successful pathogen known for its ability to cause latent infection. The latter is connected with the bacterium resting state development and is considered to be based on the activity of toxin-antitoxin (TA) systems at least in part. Here we studied the physiological and proteomic consequences of VapC toxin overexpression together with the features of the protein synthesis apparatus and compared them with the characteristics of dormant mycobacterial cells in an M. smegmatis model. The findings allow suggesting the mechanism mycobacteria enter dormancy, which is realized through VapC-caused cleavage of the 23S rRNA Sarcin-Ricin loop followed by conservation of stalled ribosomes in a membrane-associated manner. The found features of resting mycobacteria protein synthesis apparatus hypothesize the mechanisms of resuscitation from dormancy through the ribosomes de-association off the membrane accompanied by the 23S rRNA break curing, and could be of value for the development of principally new antituberculosis agents.
  13. Haripriyan U, Arun J, Gopinath KP, Mythili R, Kim W, Govarthanan M
    Arch Microbiol, 2022 Dec 15;205(1):29.
    PMID: 36522563 DOI: 10.1007/s00203-022-03367-x
    Bioremediation of heavy metals and dyes is one of the emerging techniques globally as it is evident from the numerous publications made by various research groups. Biofilm-assisted bioremediation is one of the trending approaches as it facilitates negatively charged extracellular polymeric substances which makes the bacteria resistant to the toxic chemicals. Genetic engineering of microbes will make them unique in the bioremediation process. This mini-review concentrates on source and toxic effects of heavy metals and dyes on aqueous and living beings. Further, the genetic improvement strategies for effective bioremediation are described. However, the gap between practicability and real-time applicability needs to test with real-time wastewater in the industrial scale.
  14. Wan JH, Ng LM, Neoh SZ, Kajitani R, Itoh T, Kajiwara S, et al.
    Arch Microbiol, 2023 Jan 16;205(2):66.
    PMID: 36645481 DOI: 10.1007/s00203-023-03406-1
    Polyhydroxyalkanoate (PHA) is a type of biopolymer produced by most bacteria and archaea, resembling thermoplastic with biodegradability and biocompatibility features. Here, we report the complete genome of a PHA producer, Aquitalea sp. USM4, isolated from Perak, Malaysia. This bacterium possessed a 4.2 Mb circular chromosome and a 54,370 bp plasmid. A total of 4067 predicted protein-coding sequences, 87 tRNA genes, and 25 rRNA operons were identified using PGAP. Based on ANI and dDDH analysis, the Aquitalea sp. USM4 is highly similar to Aquitalea pelogenes. We also identified genes, including acetyl-CoA (phaA), acetoacetyl-CoA (phaB), PHA synthase (phaC), enoyl-CoA hydratase (phaJ), and phasin (phaP), which play an important role in PHA production in Aquitalea sp. USM4. The heterologous expression of phaC1 from Aquitalea sp. USM4 in Cupriavidus necator PHB-4 was able to incorporate six different types of PHA monomers, which are 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), 4-hydroxybutyrate (4HB), 5-hydroxyvalerate (5HV), 3-hydroxyhexanoate (3HHx) and isocaproic acid (3H4MV) with suitable precursor substrates. This is the first complete genome sequence of the genus Aquitalea among the 22 genome sequences from 4 Aquitalea species listed in the GOLD database, which provides an insight into its genome evolution and molecular machinery responsible for PHA biosynthesis.
  15. Aziz MA, Norman S, Mohamed Zaid S, Simarani K, Sulaiman R, Mohd Aris A, et al.
    Arch Microbiol, 2023 Jan 28;205(2):76.
    PMID: 36708390 DOI: 10.1007/s00203-023-03417-y
    Wastewater monitoring for SARS-CoV-2 has attracted considerable attention worldwide to complement the existing clinical-based surveillance system. In this study, we report our first successful attempt to prove the circulation of SARS-CoV-2 genes in Malaysian urban wastewater. A total of 18 wastewater samples were obtained from a regional sewage treatment plant that received municipal sewage between February 2021 and May 2021. Using the quantitative PCR assay targeting the E and RdRp genes of SARS-CoV-2, we confirmed that both genes were detected in the raw sewage, while no viral RNA was found in the treated sewage. We were also able to show that the trend of COVID-19 cases in Kuala Lumpur and Selangor was related to the changes in SARS-CoV-2 RNA levels in the wastewater samples. Overall, our study highlights that monitoring wastewater for SARS-CoV-2 should help local health professionals to obtain additional information on the rapid and silent circulation of infectious agents in communities at the regional level.
  16. Idris FN, Nadzir MM
    Arch Microbiol, 2023 Mar 14;205(4):115.
    PMID: 36917278 DOI: 10.1007/s00203-023-03455-6
    Infections by ESKAPE (Enterococcus sp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) pathogens cause major concern due to their multi-drug resistance (MDR). The ESKAPE pathogens are frequently linked to greater mortality, diseases, and economic burden in healthcare worldwide. Therefore, the use of plants as a natural source of antimicrobial agents provide a solution as they are easily available and safe to use. These natural drugs can also be enhanced by incorporating silver nanoparticles and combining them with existing antibiotics. By focussing the attention on the ESKAPE organisms, the MDR issue can be addressed much better.
  17. Omeershffudin UNM, Kumar S
    Arch Microbiol, 2023 Sep 09;205(10):330.
    PMID: 37688619 DOI: 10.1007/s00203-023-03663-0
    The continuous rise of antimicrobial resistance (AMR) is a serious concern as it endangers the effectiveness of healthcare interventions that rely on antibiotics in the long run. The increasing resistance of Neisseria gonorrhoeae, the bacteria responsible for causing gonorrhea, to commonly used antimicrobial drugs, is a major concern. This has now become a critical global health crisis. In the coming years, there is a risk of a hidden epidemic caused by the emergence of gonococcal AMR. This will worsen the global situation. Infections caused by N. gonorrhoeae were once considered easily treatable. However, over time, they have become increasingly resistant to commonly used therapeutic medications, such as penicillin, ciprofloxacin, and azithromycin. As a result, this pathogen is developing into a true "superbug," which means that ceftriaxone is now the only available option for initial empirical treatment. Effective management strategies are urgently needed to prevent severe consequences, such as infertility and pelvic inflammatory disease, which can result from delayed intervention. This review provides a thorough analysis of the escalating problem of N. gonorrhoeae, including its pathogenesis, current treatment options, the emergence of drug-resistant mechanisms, and the potential for vaccine development. We aim to provide valuable insights for healthcare practitioners, policymakers, and researchers in their efforts to combat N. gonorrhoeae antibiotic resistance by elucidating the multifaceted aspects of this global challenge.
  18. Chen L, Kumar S, Wu H
    Arch Microbiol, 2023 Oct 20;205(11):356.
    PMID: 37863957 DOI: 10.1007/s00203-023-03699-2
    The emergence and transmission of antibiotic resistance is a global public health crisis with significant burden on healthcare systems, resulting in high mortality and economic costs. In 2019, almost five million deaths were associated with drug-resistant infections, and if left unchecked, the global economy could lose $100 trillion by 2050. To effectively combat this crisis, it is essential for all countries to understand the current situation of antibiotic resistance. In this review, we examine the current driving factors leading to the crisis, impact of critical superbugs in three regions, and identify novel mechanisms of antibiotic resistance. It is crucial to monitor the phenotypic characteristics of drug-resistant pathogens and describe the mechanisms involved in preventing the emergence of cross-resistance to novel antimicrobials. Additionally, maintaining an active pipeline of new antibiotics is essential for fighting against diverse antibiotic-resistant pathogens. Developing antibacterial agents with novel mechanisms of action is a promising way to combat increasing antibiotic-resistant pathogens.
  19. Tan MCY, Zakaria MR, Liew KJ, Chong CS
    Arch Microbiol, 2023 Jul 07;205(8):278.
    PMID: 37420023 DOI: 10.1007/s00203-023-03617-6
    Hahella is a genus that has not been well-studied, with only two identified species. The potential of this genus to produce cellulases is yet to be fully explored. The present study isolated Hahella sp. CR1 from mangrove soil in Tanjung Piai National Park, Malaysia, and performed whole genome sequencing (WGS) using NovaSeq 6000. The final assembled genome consists of 62 contigs, 7,106,771 bp, a GC ratio of 53.5%, and encoded for 6,397 genes. The CR1 strain exhibited the highest similarity with Hahella sp. HN01 compared to other available genomes, where the ANI, dDDH, AAI, and POCP were 97.04%, 75.2%, 97.95%, and 91.0%, respectively. In addition, the CAZymes analysis identified 88 GTs, 54 GHs, 11 CEs, 7 AAs, 2 PLs, and 48 CBMs in the genome of strain CR1. Among these proteins, 11 are related to cellulose degradation. The cellulases produced from strain CR1 were characterized and demonstrated optimal activity at 60 ℃, pH 7.0, and 15% (w/v) sodium chloride. The enzyme was activated by K+, Fe2+, Mg2+, Co2+, and Tween 40. Furthermore, cellulases from strain CR1 improved the saccharification efficiency of a commercial cellulase blend on the tested agricultural wastes, including empty fruit bunch, coconut husk, and sugarcane bagasse. This study provides new insights into the cellulases produced by strain CR1 and their potential to be used in lignocellulosic biomass pre-treatment.
  20. Gan PT, Lim YY, Ting ASY
    Arch Microbiol, 2023 Aug 11;205(9):304.
    PMID: 37566125 DOI: 10.1007/s00203-023-03649-y
    The influence of light exposure on antioxidant and antimicrobial activities of nine fungal isolates [Pseudopestalotiopsis theae (EF13), Fusarium solani (EF5), Xylaria venustula (PH22), Fusarium proliferatum (CCH), Colletotrichum boninese (PL9), Colletotrichum boninese (PL1), Colletotrichum boninese (OL2), Colletotrichum gloeosporioides (OL3) and Colletotrichum siamense (PL3)] were determined. The isolates were incubated in blue, red, green, yellow and white fluorescent light (12 h photoperiod of alternating light/dark). It was observed that green light induced higher total phenolic content (TPC) (2.96 ± 0.16 mg-30.71 ± 1.03 mg GAE/g) and ferric reducing antioxidant power (FRAP) in most isolates (4.82 ± 0.04-53.55 ± 4.33 mg GAE/g), whereas red light induced higher total flavonoid content (TFC) levels (1.14 ± 0.08-18.40 ± 1.12 mg QE/g). The crude extracts from most fungal cultures exposed to green and red lights were also notably more potent against the tested pathogens, as larger zones of inhibition (ZOI) (9.00 ± 1.00-38.30 ± 2.90 mm) and lower minimum inhibitory concentration (MIC) (0.0196-1.25 mg/mL) were achieved for antimicrobial effect. This study showed that light treatments are effective strategies in enhancing production of more potent antimicrobial compounds and valuable antioxidants from fungal isolates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links