Displaying all 14 publications

Abstract:
Sort:
  1. Anuar M, Singham KT
    Med J Malaysia, 1983 Mar;38(1):35-8.
    PMID: 6633332
    Two patients with ascending aortic aneurysms due to cystic medical necrosis are described. One of them was phenotypically normal while the other had features of Marfan's syndrome. Both were disabled by dyspnoea and angina which required corrective surgery.
    Matched MeSH terms: Aorta/pathology*
  2. Teoh MK, Chong JMK, Mohamed J, Phang KS
    Med J Malaysia, 1994 Sep;49(3):255-62.
    PMID: 7845276
    Antioxidants such as tocotrienols may protect against atherosclerosis since tissue injury from free radicals is a final common pathway of damage in arterial disease. In this study, the effects of tocotrienols on serum cholesterol, lipid peroxides, and aorta atheroma were assessed in rabbits fed an atherogenic diet for 12 weeks. Tocotrienols were more effective than tocopherols in preventing increases in serum LDL (p = 0.03) and total cholesterol (p = 0.008) levels in the cholesterol-fed rabbits. Elevation of serum lipid peroxides was effectively suppressed by tocotrienols (p = 0.01). Both tocopherols and tocotrienols offered significant protection against atheroma in the rabbit aorta, but tocotrienols had a stronger hypolipidaemic effect.
    Comment in: Pathmanathan R, Wong KT. Protection by tocotrienols against hypercholesterolaemia and atheroma. Med J Malaysia. 1995 Mar;50(1):117
    Matched MeSH terms: Aorta/pathology
  3. Amran AA, Zaiton Z, Faizah O, Morat P
    Singapore Med J, 2009 Mar;50(3):295-9.
    PMID: 19352574
    The fruit extract of Garcinia atroviridis (G. atroviridis) contains hydroxycitric acid and flavonoids, which have been reported to have a hypolipidaemic property. This extract with solvent methanol was used to investigate its effects on serum lipid profiles of guinea pigs fed a high cholesterol diet.
    Matched MeSH terms: Aorta/pathology
  4. Nafeeza MI, Norzana AG, Jalaluddin HL, Gapor MT
    Malays J Pathol, 2001 Jun;23(1):17-25.
    PMID: 16329543
    This study investigated the effects of a tocotrienol-rich fraction (TTRF) on the microscopic development of atherosclerosis and lipid peroxidation in the aorta of rabbits. Group 1 was fed a normal diet, group 2 received a 2% cholesterol diet and group 3 received a 2% cholesterol diet plus daily oral administration of the TTRF. After 10 weeks, the aortic content of malondialdehyde (MDA) was measured as an index of lipid peroxidation. The MDA was lowest in rabbits that received the TTRF compared to the groups that did not. The degree of intimal thickening was higher in the cholesterol-fed rabbits without the TTRF compared to the cholesterol-fed rabbits with TTRF (P<0.05). The continuity of the internal elastic lamina (IEL) was noted to be preserved in the cholesterol-fed rabbits with TTRF but appeared disrupted in the cholesterol-fed rabbits without the TTRF. The disrupted and fragmented IEL may have resulted from the injury caused by lipid peroxidation that contributed to the more extensive intimal thickening. We conclude that the antioxidant activities of the TTRF can reduce experimental atherosclerosis.
    Matched MeSH terms: Aorta/pathology
  5. Prathap K, Montgomery GL
    Pathology, 1974 Jul;6(3):255-61.
    PMID: 4412062
    Matched MeSH terms: Aorta/pathology
  6. Razak NA, Abu N, Ho WY, Zamberi NR, Tan SW, Alitheen NB, et al.
    Sci Rep, 2019 Feb 06;9(1):1514.
    PMID: 30728391 DOI: 10.1038/s41598-018-37796-w
    Eupatorin has been reported with in vitro cytotoxic effect on several human cancer cells. However, reports on the mode of action and detail mechanism of eupatorin in vitro in breast cancer disease are limited. Hence, eupatorin's effect on the human breast carcinoma cell line MCF-7 and MDA-MB-231 was investigated. MTT assay showed that eupatorin had cytotoxic effects on MCF-7 and MDA-MB-231 cells but was non-toxic to the normal cells of MCF-10a in a time-dose dependent manner. At 24 h, the eupatorin showed mild cytotoxicity on both MCF-7 and MDA-MB-231 cells with IC50 values higher than 20 μg/mL. After 48 h, eupatorin at 5 μg/mL inhibited the proliferation of MCF-7 and MDA-MB-231 cells by 50% while the IC50 of MCF-10a was significantly (p aorta ring assay. In gene expression assay, eupatorin up-regulated pro-apoptotic genes such as Bak1, HIF1A, Bax, Bad, cytochrome c and SMAC/Diablo and blocked the Phospho-Akt pathway. In conclusion, eupatorin is a potent candidate to induce apoptosis and concurrently inhibit the invasion, migration and angiogenesis of MDA-MB-231 and MCF-7 cells through inhibition of Phospho-Akt pathway and cell cycle blockade.
    Matched MeSH terms: Aorta/pathology
  7. Yeo JL, Tan BT, Achike FI
    Eur J Pharmacol, 2010 Sep 10;642(1-3):99-106.
    PMID: 20553918 DOI: 10.1016/j.ejphar.2010.05.040
    Acidosis modulates physiologic and pathophysiologic processes but the mechanism of acidotic vasodilatation remains unclear. We therefore explored this in aortic rings from normal and streptozotocin-induced diabetic Sprague-Dawley rats. Phenylephrine (PE)-induced contraction in endothelium-intact and -denuded rings were recorded under normal and acidotic pH with or without drug probes. Acidosis exerted a relaxant effect in endothelium-intact and -denuded euglycaemic and diabetic tissues. l-NAME or methylene blue partially inhibited acidotic relaxation in these endothelium-intact but not the -denuded tissues, with greater inhibition in the diabetic tissues, indicating that acidosis induces relaxation by endothelium-dependent and -independent mechanisms, the former being EDNO-cGMP mediated. Indomethacin had no effect on the tissues, indicating that cyclooxygenase products are neither involved in acidosis-induced vasodilatation nor in the modulation of phenylephrine-contraction. In euglycaemic tissues under normal pH, no K(+) channel blocker altered phenylephrine-contraction, but all (except glibenclamide) enhanced diabetic tissue contraction, indicating that normally, these channels (K(ir), K(V), BK(Ca), K(ATP)) do not modulate phenylephrine-contraction, but they (except K(ATP)) are expressed in diabetes where they attenuate phenylephine-induced contraction and modulate acidosis. Only the K(ir) channel modulates acidotic relaxation in euglycaemic tissues. Only tetraethylammonium and iberiotoxin enhanced phenylephrine-induced contraction in endothelium-denuded diabetic tissues indicating that BK(Ca) attenuates phenylephrine-contraction and that acidotic relaxation in this condition is modulated by a tetraethylammonium-sensitive mechanism. In conclusion, acidosis causes vasodilatation in normal and diabetic tissues via endothelium-dependent and -independent mechanisms differentially modulated by a combination of a NO-cGMP process and K(+) channels, some of which are dormant in the normal state but activated in diabetes mellitus.
    Matched MeSH terms: Aorta/pathology*
  8. Murty OP
    Am J Forensic Med Pathol, 2008 Sep;29(3):245-8.
    PMID: 18725781 DOI: 10.1097/PAF.0b013e318183d55f
    Giant cell myocarditis (GCM) is a rare but fatal disease of idiopathic origin. It results in focal necrosis of myocardium. This is a case report of middle aged Malaysian Indian female who died due to cardiac tamponade due to rupture myocardium and tear in the root of aorta. On naked eye examination, it simply resembled as recent as well as old fibrotic areas of myocardial infarction. She was clinically diagnosed as a case of obstructive cardiomyopathy with atrioventricular block, and was on pace maker. There was subendocardial fibrosis and left ventricular transmural infarction in the left ventricle. On histopathology, this was diagnosed as GCM, there were widespread areas of inflammatory cellular infiltration within the myocardium with multinucleated giant cells and granulomas interspersed with lymphocytes. Microscopic field showed up to 10 multinucleated giant cells. In this case, there were focal areas at multiple locations and caused uneven thickness in the left ventricle wall. Idiopathic GCM is very rare and causation of hemopericardium is the unique feature of this case. In this case the direct link of GCM with aortitis and rupture of left ventricle wall resulting in hemopericardium is shown. This case is documented through macroscopic as well as microscopic photographs in H&E, Ziel-Nelson, and GMS staining.
    Matched MeSH terms: Aorta/pathology
  9. Zulkhairi A, Zaiton Z, Jamaluddin M, Sharida F, Mohd TH, Hasnah B, et al.
    Biomed Pharmacother, 2008 Dec;62(10):716-22.
    PMID: 18538528 DOI: 10.1016/j.biopha.2006.12.003
    There is accumulating data demonstrated hypercholesterolemia and oxidative stress play an important role in the development of atherosclerosis. In the present study, a protective activity of alpha-lipoic acid; a metabolic antioxidant in hypercholesterolemic-induced animals was investigated. Eighteen adult male New Zealand White (NZW) rabbit were segregated into three groups labelled as group K, AT and ALA (n=6). While group K was fed with normal chow and acted as a control, the rest fed with 100 g/head/day with 1% high cholesterol diet to induce hypercholesterolemia. 4.2 mg/body weight of alpha lipoic acid was supplemented daily to the ALA group. Drinking water was given ad-libitum. The study was designed for 10 weeks. Blood sampling was taken from the ear lobe vein at the beginning of the study, week 5 and week 10 and plasma was prepared for lipid profile estimation and microsomal lipid peroxidation index indicated with malondialdehyde (MDA) formation. Animals were sacrificed at the end of the study and the aortas were excised for intimal lesion analysis. The results showed a significant reduction of lipid peroxidation index indicated with low MDA level (p<0.05) in ALA group compared to that of the AT group. The blood total cholesterol (TCHOL) and low density lipoprotein (LDL) levels were found to be significantly low in ALA group compared to that of the AT group (p<0.05). Histomorphometric intimal lesion analysis of the aorta showing less of atheromatous plaque formation in alpha lipoic acid supplemented group (p<0.05) compared to that of AT group. These findings suggested that apart from its antioxidant activity, alpha lipoic acid may also posses a lipid lowering effect indicated with low plasma TCHOL and LDL levels and reduced the athero-lesion formation in rabbits fed a high cholesterol diet.
    Matched MeSH terms: Aorta/pathology
  10. Thent ZC, Lin TS, Das S, Zakaria Z
    PMID: 23983373
    Cardiovascular complications are one of the major causes of death in diabetes mellitus. Piper sarmentosum (P.s) is an herb that possesses antihyperglycaemic effects. The main aim of the study was to observe the histological changes in the heart and the proximal aorta of streptozotocin-induced diabetic rats following P.s administration. Twenty-four male Sprague-Dawley rats (n=24) were equally randomized into four groups: control group supplemented with normal saline (C); control group supplemented with P.s (CTx) ; diabetic group supplemented with normal saline (D) and, diabetic group supplemented with P.s (DTx). Diabetes was induced by STZ (50mg/kg body weight) intramuscularly. P.s extract (0.125g/kg) was administered orally for 28 days, following four weeks of STZ induction. The cardiac and aortic tissues were collected and processed under different stains: Haematoxylin and Eosin (H & E), Verhoeff-Van Gieson (VVG), Masson's Trichome (MT) and Periodic Acid- Schiff (PAS). There were abnormal cardiomyocytes nuclei, disarray of myofibres and increase in connective tissue deposits in cardiac tissues of the diabetic untreated group. The thickness of tunica media and ratio of tunica intima to media were found to be significantly increased in the aorta of diabetic untreated group (P < 0.05) compared to the control group. There were degenerative changes in the proximal aorta in diabetic untreated groups. All the histological damages of cardiac and aortic tissues were found to be lesser in the diabetic treated groups. Supplementation with P.s extract prevented the oxidative damage arising from diabetes mellitus, and reduced its complications.
    Matched MeSH terms: Aorta/pathology
  11. Abeywardena M, Runnie I, Nizar M, Suhaila M, Head R, Suhaila Momamed
    Asia Pac J Clin Nutr, 2002;11 Suppl 7:S467-72.
    PMID: 12492636
    Plant-based polyphenolic compounds have been reported to possess cardiovascular health benefits. Several dietary sources, including herbs and spices, fruits and vegetables, and tea and wine, contain an array of biologically active compounds that have been shown to be effective in retarding oxidation of low-density lipoproteins (LDL) and promoting vascular relaxation. In the present study four different plant sources, both edible and non-edible, were evaluated for potential activity. Organic extracts enriched in polyphenols were prepared from palm fronds (Elaesis guineensis); lemongrass (Cymbopogon citrates); papaya shoots (Carica papaya) and green chilli (Capsicum frutescenes) and tested for their ability to prevent in vitro oxidation of LDL, and for potential vascular relaxation actions. Rings of rat thoracic aorta and isolated perfused mesenteric vascular beds were mounted in organ baths, contracted using a half-maximal dose of noradrenaline and exposed to cumulative additions of test extracts. Palm frond extract resulted in considerable relaxation (>75%) in both preparations and was found to be endothelium-dependent as removal of endothelium or inhibition of endogenous nitric oxide (NO) led to a total loss in relaxant activity. Lemongrass extract caused a greater relaxation action in the mesenteric preparation compared to aortic rings, and appears to be mediated via NO-independent and non-prostanoid mechanisms. Of the extracts tested, palm fronds also demonstrated the highest antioxidant capacity, as determined by the ferric reducing activity/potential assay, and resulted in a significant delay (P < 0.05) in the oxidation of LDL. Collectively, these preliminary findings lend further support to the potential cardiovascular actions of plant polyphenols and also identify oil palm fronds as containing constituents that promote vascular relaxation via endothelium-dependent mechanisms.
    Matched MeSH terms: Aorta/pathology
  12. Al Batran R, Al-Bayaty F, Al-Obaidi MM, Ashrafi A
    Naunyn Schmiedebergs Arch Pharmacol, 2014 Dec;387(12):1141-52.
    PMID: 25172523 DOI: 10.1007/s00210-014-1041-x
    Atherosclerosis is the commonest and most important vascular disease. Andrographolide (AND) is the main bioactive component of the medicinal plant Andrographis paniculata and is used in traditional medicine. This study was aimed to evaluate the antiatherogenic effect of AND against atherosclerosis induced by Porphyromonas gingivalis in White New Zealand rabbits. Thirty rabbits were divided into five groups as follows: G1, normal group; G2-5, were orally challenged with P. gingivalis five times a week over 12 weeks; G2, atherogenic control group; G3, standard group treated with atorvastatin (AV) 5 mg/kg; and G4 and G5, treatment groups treated with AND 10 and 20 mg/kg, respectively over 12 weeks. Serums were subjected to antioxidant enzymatic and anti-inflammatory activities, and the aorta was subjected to histological analyses. Groups treated with AND showed a significant reversal of liver and renal biochemical changes, compared with the atherogenic control group. In the same groups, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), total glutathione (GSH) levels in serum were significantly increased (P < 0.05), and lipid peroxidation (malondialdehyde (MDA)) levels were significantly decreased (P < 0.05), respectively. Furthermore, treated groups with AV and AND showed significant decrease in the level of VCAM-1 and ICAM-1 compared with the atherogenic control group. In aortic homogenate, the level of nitrotyrosine was significantly increased, while the level of MCP1 was significantly decreased in AV and AND groups compared with the atherogenic control group. In addition, staining the aorta with Sudan IV showed a reduction in intimal thickening plaque in AV and AND groups compared with the atherogenic control group. AND has showed an antiatherogenic property as well as the capability to reduce lipid, liver, and kidney biomarkers in atherogenic serum that prevents atherosclerosis complications caused by P. gingivalis.
    Matched MeSH terms: Aorta/pathology
  13. Boon CM, Ng MH, Choo YM, Mok SL
    PLoS One, 2013;8(2):e55908.
    PMID: 23409085 DOI: 10.1371/journal.pone.0055908
    Oleic acid has been shown to lower high blood pressure and provide cardiovascular protection. Curiosity arises as to whether super olein (SO), red palm olein (RPO) and palm olein (PO), which have high oleic acid content, are able to prevent the development of hypertension.
    Matched MeSH terms: Aorta/pathology*
  14. van Sleen Y, Jiemy WF, Pringle S, van der Geest KSM, Abdulahad WH, Sandovici M, et al.
    Arthritis Rheumatol, 2021 12;73(12):2327-2337.
    PMID: 34105308 DOI: 10.1002/art.41887
    OBJECTIVE: Macrophages mediate inflammation, angiogenesis, and tissue destruction in giant cell arteritis (GCA). Serum levels of the macrophage-associated protein YKL-40 (chitinase 3-like protein 1), previously linked to angiogenesis and tissue remodeling, remain elevated in GCA despite glucocorticoid treatment. This study was undertaken to investigate the contribution of YKL-40 to vasculopathy in GCA.

    METHODS: Immunohistochemistry was performed on GCA temporal artery biopsy specimens (n = 12) and aortas (n = 10) for detection of YKL-40, its receptor interleukin-13 receptor α2 (IL-13Rα2), macrophage markers PU.1 and CD206, and the tissue-destructive protein matrix metalloproteinase 9 (MMP-9). Ten noninflamed temporal artery biopsy specimens served as controls. In vitro experiments with granulocyte-macrophage colony-stimulating factor (GM-CSF)- or macrophage colony-stimulating factor (M-CSF)-skewed monocyte-derived macrophages were conducted to study the dynamics of YKL-40 production. Next, small interfering RNA-mediated knockdown of YKL-40 in GM-CSF-skewed macrophages was performed to study its effect on MMP-9 production. Finally, the angiogenic potential of YKL-40 was investigated by tube formation experiments using human microvascular endothelial cells (HMVECs).

    RESULTS: YKL-40 was abundantly expressed by a CD206+MMP-9+ macrophage subset in inflamed temporal arteries and aortas. GM-CSF-skewed macrophages from GCA patients, but not healthy controls, released significantly higher levels of YKL-40 compared to M-CSF-skewed macrophages (P = 0.039). In inflamed temporal arteries, IL-13Rα2 was expressed by macrophages and endothelial cells. Functionally, knockdown of YKL-40 led to a 10-50% reduction in MMP-9 production by macrophages, whereas exposure of HMVECS to YKL-40 led to significantly increased tube formation.

    CONCLUSION: In GCA, a GM-CSF-skewed, CD206+MMP-9+ macrophage subset expresses high levels of YKL-40 which may stimulate tissue destruction and angiogenesis through IL-13Rα2 signaling. Targeting YKL-40 or GM-CSF may inhibit macrophages that are currently insufficiently suppressed by glucocorticoids.

    Matched MeSH terms: Aorta/pathology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links