Displaying publications 1 - 20 of 115 in total

Abstract:
Sort:
  1. Zyoud SH, Al-Jabi SW, Sweileh WM, Awang R, Waring WS
    Hum Exp Toxicol, 2015 Oct;34(10):1006-16.
    PMID: 26429951 DOI: 10.1177/0960327114565494
    PURPOSE: The main objective of this study was to examine the publication pattern of N-acetylcysteine (NAC) research output for paracetamol overdose at the global level.
    METHODS: Data were searched for documents that contained specific words regarding NAC and paracetamol as keywords in the title and/or abstract and/or keywords. Scientific output was evaluated based on a methodology developed and used in other bibliometric studies. Research productivity was adjusted to the national population and nominal gross domestic product per capita.
    RESULTS: The criteria were met by 367 publications from 33 countries. The highest number of articles associated with the use of NAC in paracetamol overdose was from the United States of America (USA; 39.78%), followed by the United Kingdom (UK; 11.99%). After adjusting for economy and population power, USA (2.822), Iran (1.784) and UK (1.125) had the highest research productivity. The total number of citations at the time of data analysis (14 March 2014) was 8785 with an average of 23.9 citations per document and a median (interquartile range) of 6 (1-22). The h-index of the retrieved documents was 48. The highest h-index was 32 for USA, followed by 20 for UK. Furthermore, the highest number of collaborations with international authors for each country was held by USA with 11 countries, followed by Canada with 7 countries.
    CONCLUSION: The amount of NAC-based research activity was low in some countries, and more effort is needed to bridge this gap and to promote better evaluation of NAC use worldwide. Our findings demonstrate that NAC use for paracetamol overdose remains a hot issue in scientific research and may have a larger audience compared with other toxicological aspects. Editors and authors in the field of toxicology might usefully promote the submission of work on NAC in future to improve their journal's impact.
    KEYWORDS: Bibliometric; NAC; Scopus; acetaminophen; acetylcysteine; citations; paracetamol; poisoning
    Matched MeSH terms: Acetaminophen/poisoning*
  2. Nassar I, Pasupati T, Judson JP, Segarra I
    Indian J Pharmacol, 2009 Aug;41(4):167-72.
    PMID: 20523867 DOI: 10.4103/0253-7613.56071
    PURPOSE: Imatinib is an efficacious drug against chronic myeloid leukemia (CML) and gastrointestinal stromal tumor (GIST) due to selective inhibition of c-KIT and BCR-ABL kinases. It presents almost complete bioavailability, is eliminated via P450-mediated metabolism and is well tolerated. However, a few severe drug-drug interactions have been reported in cancer patients taking acetaminophen.
    MATERIALS AND METHODS: Male ICR mice were given 100 mg/kg single dose of imatinib orally or imatinib 100 mg/kg (orally) coadministered with acetaminophen intraperitoneally (700 mg/kg). Mice were euthanized at predetermined time points, blood samples collected, and imatinib plasma concentration measured by HPLC.
    RESULTS: Imatinib AUC(0-12) was 27.04 +/- 0.38 mg.h/ml, C(max) was 7.21 +/- 0.99 mg/ml and elimination half-life was 2.3 hours. Acetaminophen affected the imatinib disposition profile: AUC(0-12) and C(max) decreased 56% and 59%, respectively and a longer half-life was observed (5.6 hours).
    CONCLUSIONS: The study shows a pharmacokinetic interaction between acetaminophen and imatinib which may render further human studies necessary if both drugs are administered concurrently to cancer patients.
    Matched MeSH terms: Acetaminophen
  3. Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, et al.
    J Environ Manage, 2023 Nov 01;345:118772.
    PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772
    This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
    Matched MeSH terms: Acetaminophen*
  4. Noordin MI, Chung LY
    Drug Dev Ind Pharm, 2004;30(9):925-30.
    PMID: 15554216
    This study adopts Differential Scanning Calorimetry (DSC) to analyze the thermal properties of samples (2.5-4.0 mg) from the tip, middle, and base sections of individual paracetamol suppositories, which were sampled carefully using a stainless steel scalpel. The contents of paracetamol present in the samples obtained from these sections were determined from the enthalpies of fusion of paracetamol and expressed as % w/w paracetamol to allow comparison of the amount of paracetamol found in each section. The tip, middle, and base sections contained 10.1+/-0.2%, 10.1+/-0.2%, and 10.3+/-0.2% w/w paracetamol, and are statistically similar (One-way anova; p>0.05). This indicates that the preparation technique adopted produces high quality suppositories in terms of content uniformity. The contents of paracetamol in the 120-mg paracetamol suppositories determined by DSC and UV spectrophotometry were statistically equivalent (Students's t-test; p>0.05), 120.8+/-2.6 mg and 120.8+/-1.5 mg, respectively, making DSC a clear alternative method for the measurement of content of drug in suppositories. The main advantages of the method are that samples of only 2.5-4.0 mg are required and the procedure does not require an extraction process, which allows for the analysis to be completed rapidly. In addition, it is highly sensitive and reproducible, with the lower detection limit at 4.0% w/w paracetamol, which is about 2.5 times lower than the content of paracetamol (10% w/w) present in our 120-mg paracetamol suppositories and commercial paracetamol suppositories, which contained about 125 mg paracetamol. Therefore, this method is particularly suited for determination of content uniformity in individual suppositories in quality control (QC) and in process quality control (PQC).
    Matched MeSH terms: Acetaminophen/administration & dosage; Acetaminophen/analysis*
  5. Almurisi SH, Doolaanea AA, Akkawi ME, Chatterjee B, Ahmed Saeed Aljapairai K, Islam Sarker MZ
    Drug Dev Ind Pharm, 2020 Aug;46(8):1373-1383.
    PMID: 32619118 DOI: 10.1080/03639045.2020.1791165
    OBJECTIVE: Paracetamol is a common antipyretic and analgesic medicine used in childhood illness by parents and physicians worldwide. Paracetamol has a bitter taste that is considered as a significant barrier for drug administration. This study aimed to develop an oral dosage form that is palatable and easy to swallow by pediatric patients as well as to overcome the shortcomings of liquid formulations.

    METHODS: The paracetamol was encapsulated in beads, which were prepared mainly from alginate and chitosan through electrospray technique. The paracetamol beads were sprinkled on the instant jelly prepared from glycine, ι-carrageenan and calcium lactate gluconate. The paracetamol instant jelly characteristics, in terms of physical appearance, texture, rheology, in vitro drug release and palatability were assessed on a human volunteer.

    RESULTS: The paracetamol instant jelly was easily reconstituted in 20 mL of water within 2 min to form jelly with acceptable consistency and texture. The jelly must be ingested within 30 min after reconstitution to avoid the bitter taste. The palatability assessment carried out on 12 human subjects established the similar palatability and texture of the paracetamol instant jelly dosage comparable to the commercial paracetamol suspension and was found to be even better in overcoming the aftertaste of paracetamol.

    CONCLUSION: Such findings indicate that paracetamol instant jelly will compensate for the use of sweetening and flavoring agents as well as develop pediatric dosage forms with limited undesired excipients.

    Matched MeSH terms: Acetaminophen*
  6. Prasadi G, Senarathna L, Dharmaratne SD, Mohamed F, Jayasinghe SS, Dawson A
    J Child Health Care, 2023 Mar;27(1):105-115.
    PMID: 34719983 DOI: 10.1177/13674935211046101
    Caregivers are primarily responsible for the administration of Over The Counter (OTC) medications in children. This study examines the mothers' ability to determine and measure paracetamol doses for children aged between 1 and 5 years. A contrived observational study was conducted for mothers of preschool aged children at two Public Health Midwifery (PHM) areas in Southern province, Sri Lanka. Stratified random sampling was used. Only 26.9% (n = 95, 95% CI = 22.5%-31.7%) of the 353 participants correctly determined and measured the doses of paracetamol. Errors were frequently made in both determining and measuring dose together (n = 113, 32.0%, 95% CI = 27.3%-37.1%), determining only (n = 94, 26.6%, 95% CI = 22.2%-31.5%) and measurement only (n = 51, 14.4%, 95% CI = 11.1%-18.5%). Dose determined errors were not significantly associated with maternal education, number of children in the family, total monthly income and age of the index child. Similarly measuring errors were not significantly associated with mothers' education, income of the family and number of children in the family. However, there was a weak positive correlation between measuring errors and age of the index child. The study suggests that mothers made errors when determining doses and measuring doses of paracetamol. Results emphasize importance of clear, concise guardian information leaflet and healthcare professionals' guidance to minimize dosing errors of child medication.
    Matched MeSH terms: Acetaminophen*
  7. Zaulkiflee ND, Ahmad AL, Sugumaran J, Lah NFC
    ACS Omega, 2020 Sep 22;5(37):23892-23897.
    PMID: 32984709 DOI: 10.1021/acsomega.0c03142
    The purpose of this study is to explore the emulsion liquid membrane stability for acetaminophen (ACTP) removal from aqueous solution. In this work, the membrane phase was prepared by dissolving trioctylamine (TOA) with kerosene and Span80. The stability of the emulsion in terms of emulsion size, membrane breakage, and its efficiency in removing ACTP was considered for the optimization of parameters. Investigation on the stability of emulsion was carried out by manipulating the concentration of stripping agent, agitation speed, extraction time, and treat ratio. The best condition to produce a very stable emulsion was achieved at 0.1 M of stripping agent concentration, with 300 rpm of agitation speed for 3 min of extraction time with a treat ratio of 3:1. Eighty-five percent of ACTP successfully stripped into the emulsion with minimum membrane breakage of 0.17% through this experiment.
    Matched MeSH terms: Acetaminophen
  8. Vakili M, Amouzgar P, Cagnetta G, Wang B, Guo X, Mojiri A, et al.
    Polymers (Basel), 2019 Oct 16;11(10).
    PMID: 31623271 DOI: 10.3390/polym11101701
    A composite chitosan/nano-activated carbon (CS-NAC) aminated by (3-aminopropyl)triethoxysilane (APTES) was prepared in the form of beads and applied for the removal of acetaminophen from aqueous solutions. NAC and APTES concentrations were optimized to obtain a suitable adsorbent structure for enhanced removal of the pharmaceutical. The aminated adsorbent (CS-NAC-APTES beads) prepared with 40% w/w NAC and 2% v/v APTES showed higher adsorption capacity (407.83 mg/g) than CS-NAC beads (278.4 mg/g). Brunauer-Emmett-Teller (BET) analysis demonstrated that the surface area of the CS-NAC-APTES beads was larger than that of CS-NAC beads (1.16 times). The adsorption process was well fitted by the Freundlich model (R2 > 0.95), suggesting a multilayer adsorption. The kinetic study also substantiated that the pseudo-second-order model (R2 > 0.98) was in better agreement with the experimental data. Finally, it was proved that the prepared beads can be recycled (by washing with NaOH solution) at least 5 times before detectable performance loss.
    Matched MeSH terms: Acetaminophen
  9. See IO
    Med J Malaysia, 1996 Mar;51(1):159-60.
    PMID: 10968003
    Matched MeSH terms: Acetaminophen/adverse effects*
  10. Chan SY, Goh CF, Lau JY, Tiew YC, Balakrishnan T
    Int J Pharm, 2019 May 01;562:203-211.
    PMID: 30904726 DOI: 10.1016/j.ijpharm.2019.03.044
    Rice starch is known to have an excellent film-forming behaviour in the packaging industry but inadequate attention was given to this biopolymer to be developed into thin films for drug delivery. Accordingly, rice starch thin films containing a model drug, paracetamol and plasticisers (glycerol or sorbitol) were developed using film casting technique. This study focuses on investigating the impact of plasticiser and drug loading on drug release pattern of rice starch films which has not been explored to date. The obtained rice films were characterised for their physicochemical properties including swelling and dissolution study. The highest drug dissolution rate was achieved in the rice films with a low drug loading due to drug amorphicity in nature. When drug loading increases, the swelling behaviour of rice films plays a dominant role in releasing drug in the crystalline form. The role of plasticiser was indicated by the plasticiser-starch interaction where a strong interaction allows drug solubilisation more readily in the dissolution medium. It is envisaged that rice films could be tailored to achieve desired drug release pattern with different plasticiser.
    Matched MeSH terms: Acetaminophen/chemistry
  11. Cooper DJ, Grigg MJ, Plewes K, Rajahram GS, Piera KA, William T, et al.
    Clin Infect Dis, 2022 Oct 12;75(8):1379-1388.
    PMID: 35180298 DOI: 10.1093/cid/ciac152
    BACKGROUND: Acetaminophen inhibits cell-free hemoglobin-induced lipid peroxidation and improves renal function in severe falciparum malaria but has not been evaluated in other infections with prominent hemolysis, including Plasmodium knowlesi malaria.

    METHODS: PACKNOW was an open-label, randomized, controlled trial of acetaminophen (500 mg or 1000 mg every 6 hours for 72 hours) vs no acetaminophen in Malaysian patients aged ≥5 years with knowlesi malaria of any severity. The primary end point was change in creatinine at 72 hours. Secondary end points included longitudinal changes in creatinine in patients with severe malaria or acute kidney injury (AKI), stratified by hemolysis.

    RESULTS: During 2016-2018, 396 patients (aged 12-96 years) were randomized to acetaminophen (n = 199) or no acetaminophen (n = 197). Overall, creatinine fell by a mean (standard deviation) 14.9% (18.1) in the acetaminophen arm vs 14.6% (16.0) in the control arm (P = .81). In severe disease, creatinine fell by 31.0% (26.5) in the acetaminophen arm vs 20.4% (21.5) in the control arm (P = .12), and in those with hemolysis by 35.8% (26.7) and 19% (16.6), respectively (P = .07). No difference was seen overall in patients with AKI; however, in those with AKI and hemolysis, creatinine fell by 34.5% (20.7) in the acetaminophen arm vs 25.9% (15.8) in the control arm (P = .041). Mixed-effects modeling demonstrated a benefit of acetaminophen at 72 hours (P = .041) and 1 week (P = .002) in patients with severe malaria and with AKI and hemolysis (P = .027 and P = .002, respectively).

    CONCLUSIONS: Acetaminophen did not improve creatinine among the entire cohort but may improve renal function in patients with severe knowlesi malaria and in those with AKI and hemolysis.

    CLINICAL TRIALS REGISTRATION: NCT03056391.

    Matched MeSH terms: Acetaminophen/therapeutic use
  12. Duraisamy M, Elancheziyan M, Eswaran M, Ganesan S, Ansari AA, Rajamanickam G, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125329.
    PMID: 37307970 DOI: 10.1016/j.ijbiomac.2023.125329
    The use of advanced electroactive catalysts enhances the performance of electrochemical biosensors in real-time biomonitoring and has received much attention owing to its excellent physicochemical and electrochemical possessions. In this work, a novel biosensor was developed based on the electrocatalytic activity of functionalized vanadium carbide (VC) material, including VC@ruthenium (Ru), VC@Ru-polyaniline nanoparticles (VC@Ru-PANI-NPs) as non-enzymatic nanocarriers for the fabrication of modified screen-printed electrode (SPE) to detect acetaminophen in human blood. As-prepared materials were characterized using SEM, TEM, XRD, and XPS techniques. Biosensing was carried out using cyclic voltammetry and differential pulse voltammetry techniques and has revealed imperative electrocatalytic activity. A quasi-reversible redox method of the over-potential of acetaminophen increased considerably compared with that at the modified electrode and the bare SPE. The excellent electrocatalytic behaviour of VC@Ru-PANI-NPs/SPE is attributed to its distinctive chemical and physical properties, including rapid electron transfer, striking ᴫ-ᴫ interface, and strong adsorptive capability. This electrochemical biosensor exhibits a detection limit of 0.024 μM, in a linear range of 0.1-382.72 μM with a reproducibility of 2.45 % relative standard deviation, and a good recovery from 96.69 % to 105.59 %, the acquired results ensure a better performance compared with previous reports. The enriched electrocatalytic activity of this developed biosensor is mainly credited to its high surface area, better electrical conductivity, synergistic effect, and abundant electroactive sites. The real-world utility of the VC@Ru-PANI-NPs/SPE-based sensor was ensured via the investigation of biomonitoring of acetaminophen in human blood samples with satisfactory recoveries.
    Matched MeSH terms: Acetaminophen/chemistry
  13. Zyoud SH, Awang R, Sulaiman SA
    Pharmacoepidemiol Drug Saf, 2012 Feb;21(2):207-13.
    PMID: 21812068 DOI: 10.1002/pds.2218
    The present study examines the relationship between the dose of acetaminophen reported to have been ingested by patients and the occurrence of serum acetaminophen levels above the 'possible toxicity' line in patients presenting at the hospital after acetaminophen overdose. The prognostic value of patient-reported dosage cut-offs of 8, 10 and 12 g was determined.
    Matched MeSH terms: Acetaminophen/administration & dosage; Acetaminophen/pharmacokinetics; Acetaminophen/poisoning*
  14. Aina A, Gupta M, Boukari Y, Morris A, Billa N, Doughty S
    Saudi Pharm J, 2016 Mar;24(2):227-31.
    PMID: 27013917 DOI: 10.1016/j.jsps.2015.03.015
    The microencapsulation of three model drugs; metronidazole, paracetamol and sulphapyridine into Poly (dl-Lactide-Co-Glycolide) (PLGA) scaffolds were probed using X-ray Powder Diffraction (XRPD). Changes in the diffraction patterns of the PLGA scaffolds after encapsulation was suggestive of a chemical interaction between the pure drugs and the scaffolds and not a physical intermixture.
    Matched MeSH terms: Acetaminophen
  15. Abdullah N, Fulazzaky MA, Yong EL, Yuzir A, Sallis P
    J Environ Manage, 2016 Mar 1;168:273-9.
    PMID: 26760229 DOI: 10.1016/j.jenvman.2015.12.015
    The treatment of high-strength organic brewery wastewater with added acetaminophen (AAP) by an anaerobic digester was investigated. An anaerobic packed-bed reactor (APBR) was operated as a continuous process with an organic loading rate of 1.5-g COD per litre per day and a hydraulic retention time of three days. The results of steady-state analysis showed that the greatest APBR performances for removing COD and TOC were as high as 98 and 93%, respectively, even though the anaerobic digestibility after adding the different AAP concentrations of 5, 10 and 15 mg L(-1) into brewery wastewater can affect the efficiency of organic matter removal. The average CH4 production decreased from 81 to 72% is counterbalanced by the increased CO2 production from 11 to 20% before and after the injection of AAP, respectively. The empirical kinetic models for substrate utilisation and CH4 production were used to predict that, under unfavourable conditions, the performance of the APBR treatment process is able to remove COD with an efficiency of only 6.8%.
    Matched MeSH terms: Acetaminophen
  16. Choy YW, Khan N, Yuen KH
    Int J Pharm, 2005 Aug 11;299(1-2):55-64.
    PMID: 15955645
    A polyglycolised glyceride carrier, Gelucire 50/13, was incorporated with paracetamol as a model drug, filled into hard gelatin capsules and stored at three different temperatures for various lengths of time. The resultant solidified matrix within the capsule was subjected to thermal analysis using differential scanning calorimetry (DSC) to ascertain its supramolecular structure. Polymorphic transformations towards more stable gelucire forms were observed upon aging the matrices, with samples stored at a temperature near the melting range of the lower temperature gelucire melting fraction showing the most profound changes. The increase in the rate of drug release from aged samples could be correlated to the alterations to the supramolecular structure of the gelucire. Accelerated drug release from aged samples could also be seen from in vivo studies using healthy human volunteers, although the extent of absorption was not affected. Therefore, even though the sustainability of release may be compromised by aging the gelucire matrices, the bioavailability of the incorporated drug is unlikely to be affected.
    Matched MeSH terms: Acetaminophen/blood; Acetaminophen/pharmacokinetics*; Acetaminophen/chemistry
  17. Amekyeh H, Billa N, Roberts C
    Int J Pharm, 2017 Jan 30;517(1-2):42-49.
    PMID: 27923696 DOI: 10.1016/j.ijpharm.2016.12.001
    Oral delivery of pharmaceuticals requires that they retain their physical and chemical attributes during transit within the gastrointestinal (GI) tract, for the manifestation of desired therapeutic profiles. Solid lipid nanoparticles (SLNs) are used as carriers to improve the absorption of hydrophobic drugs. In this study, we examine the stability of amphotericin B (AmB) and paracetamol (PAR) SLNs in simulated GI fluids during gastric emptying. On contact with the simulated fluids, the particles increased in size due to ingress of the dissolution media into the particles. Simulated gastric emptying revealed that the formulations had mean sizes <350nm and neutral surface charges, both of which are optimal for intestinal absorption of SLNs. There was ingress of the fluids into the SLNs, followed by diffusion of the dissolved drug, whose rate depended on the solubility of the loaded-drug in the particular medium. Time-of-flight secondary ion mass spectrometry analyses indicated that drug loading followed the core-shell model and that the AmB SLNs have a more drug-enriched core than the PAR SLNs do. The AmB SLNs are therefore a very suitable carrier of AmB for oral delivery. The stability of the SLNs in the simulated GI media indicates their suitability for oral delivery.
    Matched MeSH terms: Acetaminophen/administration & dosage; Acetaminophen/pharmacology*; Acetaminophen/chemistry
  18. Tan SF, Chong CP, Chooi WT
    MyJurnal
    An assessment on the use of acetaminophen (paracetamol) among consumers would
    provide guidance for implementing strategies to overcome the misuse of acetaminophencontaining
    products. This study aims to evaluate Malaysian consumers’ practices,
    perceptions and understanding regarding the use of acetaminophen. A semi-structured
    qualitative study utilising face-to-face interviews was conducted among 14 consumers
    aged 24 to 82 years old who live in Pulau Pinang, Malaysia. Transcripts of all the
    interviews were generated from audio tapes and were analysed for the issues and themes
    emerging from the text; the transcripts were independently coded and verified by experts.
    The consumers had a positive attitude towards the popularity, safety and efficacy of
    acetaminophen. The consumers predominantly used acetaminophen for pain and fever.
    Some consumers tended to increase the frequency and dosage of acetaminophen
    consumption if their condition persisted. Consumers had difficulty recognising the generic
    acetaminophen-containing products available in the market. Health literacy investigations
    have found that consumers have a lack of knowledge regarding the correct dosing
    regimen for acetaminophen in adults and children. The consumers were not aware of the
    precautions and toxicities of acetaminophen. To increase awareness of acetaminophen
    poisoning in Malaysia, the consumers suggested that educational tools regarding the
    proper use of acetaminophen are needed from the Ministry of Health and policy-makers.
    The information gained from this study emphasises the importance of educational
    interventions to educate the public on the proper use of acetaminophen in Malaysia.
    Matched MeSH terms: Acetaminophen
  19. Zakaria ZA, Rofiee MS, Somchit MN, Zuraini A, Sulaiman MR, Teh LK, et al.
    PMID: 21318140 DOI: 10.1155/2011/142739
    The present study aims to determine the hepatoprotective effect of MARDI-produced virgin coconut oils, prepared by dried- or fermented-processed methods, using the paracetamol-induced liver damage in rats. Liver injury induced by 3 g/kg paracetamol increased the liver weight per 100 g bodyweight indicating liver damage. Histological observation also confirms liver damage indicated by the presence of inflammations and necrosis on the respective liver section. Interestingly, pretreatment of the rats with 10, but not 1 and 5, mL/kg of both VCOs significantly (P < .05) reduced the liver damage caused by the administration of paracetamol, which is further confirmed by the histological findings. In conclusion, VCO possessed hepatoprotective effect that requires further in-depth study.
    Matched MeSH terms: Acetaminophen
  20. Amekyeh H, Billa N, Yuen KH, Chin SL
    AAPS PharmSciTech, 2015 Aug;16(4):871-7.
    PMID: 25588365 DOI: 10.1208/s12249-014-0279-4
    The gastrointestinal (GI) transit behavior of and absorption from an amphotericin B (AmB) solid lipid nanoformulation (SLN) in rats was investigated. We aimed to estimate the gastric emptying time (GET) and cecal arrival time (CAT) of AmB SLN in rats as animal models. From these two parameters, an insight on the absorption window of AmB was ascertained. Three types of SLNs, AmB, paracetamol (PAR), and sulfasalazine (SSZ), were similarly formulated using beeswax/theobroma oil composite as the lipid matrix and characterized with regard to size, viscosity, density, migration propensity within agarose gel, in vitro drug release, morphology, gastrointestinal transit, and in vivo absorption. The GET and CAT were estimated indirectly using marker drugs: PAR and sulfapyridine (SP). All three types of SLNs exhibited identical properties with regard to z-average, viscosity, relative density, and propensity to migrate. PAR was absorbed rapidly from the small intestine following emptying of the SLNs giving the T50E (time for 50% absorption of PAR) to be 1.6 h. SP was absorbed after release and microbial degradation of SSZ from SLN in the colon with a lag time of 2 h post-administration, serving as the estimated cecal arrival time of the SLNs. AmB within SLN was favorably absorbed from the small intestine, albeit slowly.
    Matched MeSH terms: Acetaminophen/administration & dosage; Acetaminophen/pharmacokinetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links