Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.
Any forms of valorization of microorganisms would require accurate identity recognition to ensure repeatability, reproducibility and quality assurance. This study aimed to evaluate the effectiveness of different primers for identifying cultured eukaryotic microalgae using a simple 18S rDNA approach. A total of 34 isolated microalgae and one culture collection were utilized in the search for an effective molecular identification method for microalgae. Ammonium formate was applied to marine microalgae prior to DNA extraction. The microalgal DNA was extracted using a commercial kit and subjected directly to PCR amplification using four different published 18S rDNA primers. The DNA sequences were analysed using Basic Local Alignment Search Tool (BLAST) and phylogenetic trees to determine the microalgae identity. The identity was further validated with conventional morphological taxonomic identification, and the relationship of microalgal morphology and genetic materials was also determined. The microalgal DNA was successfully amplified, including marine species without prior cleaning. In addition, the ss5 + ss3 primer pair was found to be an ideal primer set among the tested primers for identifying microalgae. Overall, molecular identification showed relative matching with morphological identification (82.86%). This study is important because it serves as a platform to develop a standardized eukaryotic microalgae identification method. In addition, this method could help to ease the eukaryotic microalgae identification process and enrich the current reference databases such as GenBank.