In a previous study, notable differences of several physicochemical properties, as well as the community structure of ammonia oxidizing bacteria as judged by 16S rRNA gene analysis, were observed among several disused tin-mining ponds located in the town of Kampar, Malaysia. These variations were associated with the presence of aquatic vegetation as well as past secondary activities that occurred at the ponds. Here, methane oxidizing bacteria (MOB), which are direct participants in the nutrient cycles of aquatic environments and biological indicators of environmental variations, have been characterised via analysis of pmoA functional genes in the same environments. The MOB communities associated with disused tin-mining ponds that were exposed to varying secondary activities were examined in comparison to those in ponds that were left to nature. Comparing the sequence and phylogenetic analysis of the pmoA clone libraries at the different ponds (idle, lotus-cultivated and post-aquaculture), we found pmoA genes indicating the presence of type I and type II MOB at all study sites, but type Ib sequences affiliated with the Methylococcus/Methylocaldum lineage were most ubiquitous (46.7 % of clones). Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture was observed to harbor the highest richness of MOB. However, varying secondary activity or sample type did not show a strong variation in community patterns as compared to the ammonia oxidizers in our previous study.
Aquilaria malaccensis produces agarwood in response to wounding and fungal attack. However, information is limited regarding Aquilaria's interaction with its diverse fungal community. In this study, time-related changes of three natural fungal colonizers in two wounded wild A. malaccensis were tracked, beginning a few hours after wounding up to 12 months. Using species-specific primers derived from their nrITS sequences in quantitative real-time PCR (qPCR), we quantified the amount of Cunninghamella bainieri, Fusarium solani and Lasiodiplodia theobromae. Because time is a major factor affecting agarwood quantity and quality, 14 wood samples were collected at different time points, i.e., 0-18 h, 2-13 days, 2-18 weeks, and 6-12 months after wounding. qPCR data revealed that the abundance of the three species decreased over time. The fungi were detected in high numbers during the first few hours and days after wounding (40- to 25,000-fold higher levels compared with initial counts) and in low numbers (<1- to 3,200-fold higher than initially) many months later. Consistent with its role in defense response, the accumulation of secondary metabolites at the wounding site could have caused the decline in fungal abundance. Succession patterns of the two trees were not identical, indicating that fungal populations may have been affected by tree environment and wound microclimate. Our results are important for understanding the diversity of microbial community in wild Aquilaria species and their association to wound-induced agarwood formation. Fungi could be secondary triggers to agarwood production in situations where trees are wounded in attempt to induce agarwood.
A wild-type, Gram-positive, rod-shaped, endospore-forming and motile bacteria has been isolated from palm oil mill sludge in Malaysia. Molecular identification using 16S rRNA gene sequence analysis indicated that the bacteria belonged to genus Paenibacillus. With 97 % similarity to P. alvei (AUG6), the isolate was designated as P. alvei AN5. An antimicrobial compound was extracted from P. alvei AN5-pelleted cells using 95 % methanol and was then lyophilized. Precipitates were re-suspended in phosphate buffered saline (PBS), producing an antimicrobial crude extract (ACE). The ACE showed antimicrobial activity against Salmonella enteritidis ATCC 13076, Escherichia coli ATCC 29522, Bacillus cereus ATCC 14579 and Lactobacillus plantarum ATCC 8014. By using SP-Sepharose cation exchange chromatography, Sephadex G-25 gel filtration and Tricine SDS-PAGE, the ACE was purified, which produced a ~2-kDa active band. SDS-PAGE and infrared (IR) spectroscopy indicated the proteinaceous nature of the antimicrobial compound in the ACE, and liquid chromatography electrospray ionization mass spectroscopy and de novo sequencing using an automatic, Q-TOF premier system detected a peptide with the amino acid sequence F-C-K-S-L-P-L-P-L-S-V-K (1,330.7789 Da). This novel peptide was designated as AN5-2. The antimicrobial peptide exhibited stability from pH 3 to 12 and maintained its activity after being heated to 90 °C. It also remained active after incubation with denaturants (urea, SDS and EDTA).
Genomic DNA of Vibrio parahaemolyticus were characterized by antibiotic resistance, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) and random amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR) analysis. These isolates originated from 3 distantly locations of Selangor, Negeri Sembilan and Melaka (East coastal areas), Malaysia. A total of 44 (n = 44) of tentatively V. parahaemolyticus were also examined for the presence of toxR, tdh and trh gene. Of 44 isolates, 37 were positive towards toxR gene; while, none were positive to tdh and trh gene. Antibiotic resistance analysis showed the V. parahaemolyticus isolates were highly resistant to bacitracin (92%, 34/37) and penicillin (89%, 33/37) followed by resistance towards ampicillin (68%, 25/37), cefuroxime (38%, 14/37), amikacin (6%, 2/37) and ceftazidime (14%, 5/37). None of the V. parahaemolyticus isolates were resistant towards chloramphenicol, ciprofloxacin, ceftriaxone, enrofloxacin, norfloxacin, streptomycin and vancomycin. Antibiogram patterns exhibited, 9 patterns and phenotypically less heterogenous when compared to PCR-based techniques using ERIC- and RAPD-PCR. The results of the ERIC- and RAPD-PCR were analyzed using GelCompare software. ERIC-PCR with primers ERIC1R and ERIC2 discriminated the V. parahaemolyticus isolates into 6 clusters and 21 single isolates at a similarity level of 80%. While, RAPD-PCR with primer Gen8 discriminated the V. parahaemolyticus isolates into 11 clusters and 10 single isolates and Gen9 into 8 clusters and 16 single isolates at the same similarity level examined. Results in the presence study demonstrated combination of phenotypically and genotypically methods show a wide heterogeneity among cockle isolates of V. parahaemolyticus.
The potential of Parthenium sp. as a feedstock for enzymatic saccharification was investigated by using chemical and biological pretreatment methods. Mainly chemical pretreatments (acid and alkali) were compared with biological pretreatment with lignolytic fungi Marasmiellus palmivorus PK-27. Structural and chemical changes as well as crystallinity of cellulose were examined through scanning electron microscopy, fourier transform infra red and X-ray diffraction analysis, respectively after pretreatment. Total reducing sugar released during enzymatic saccharification of pretreated substrates was also evaluated. Among the pretreatment methods, alkali (1% NaOH) treated substrate showed high recovery of acid perceptible polymerised lignin (7.53 ± 0.5 mg/g) and significantly higher amount of reducing sugar (513.1 ± 41.0 mg/gds) compared to uninoculated Parthenium (163.4 ± 21.2) after 48 h of hydrolysis. This is the first report of lignolytic enzyme production from M. palmivorus, prevalent in oil palm plantations in Malaysia and its application in biological delignification of Parthenium sp. Alkali (1% NaOH) treatment proves to be the suitable method of pretreatment for lignin recovery and enhanced yield of reducing sugar which may be used for bioethanol production from Parthenium sp.
Although the multi-copy and specific element IS6110 provides a good target for the detection of Mycobacterium tuberculosis complex by PCR techniques, the emergence of IS6110-negative strains suggested that false negative may occur if IS6110 alone is used as the target for detection. In this report, a multiplex polymerase chain reaction (mPCR) system was developed using primers derived from the insertion sequence IS6110 and an IS-like elements designated as B9 (GenBank accession no. U78639.1) to overcome the problem of detecting negative or low copy IS6110 containing strains of M. tuberculosis. The mPCR was evaluated using 346 clinical samples which included 283 sputum, 19 bronchial wash, 18 pleural fluid, 9 urine, 7 CSF, 6 pus, and 4 gastric lavage samples. Our results showed that the sensitivity (93.1 %) and specificity (89.6 %) of the mPCR system exceeds that of the conventional method of microscopy and culture. The mPCR assay provides an efficient strategy to detect and identify M. tuberculosis from clinical samples and enables prompt diagnosis when rapid identification of infecting mycobacteria is necessary.
Disused tin-mining ponds make up a significant amount of water bodies in Malaysia particularly at the Kinta Valley in the state of Perak where tin-mining activities were the most extensive, and these abundantly available water sources are widely used in the field of aquaculture and agriculture. However, the natural ecology and physicochemical conditions of these ponds, many of which have been altered due to secondary post-mining activities, remains to be explored. As ammonia-oxidizing bacteria (AOB) are directly related to the nutrient cycles of aquatic environments and are useful bioindicators of environmental variations, the focus of this study was to identify AOBs associated with disused tin-mining ponds that have a history of different secondary activities in comparison to ponds which were left untouched and remained as part of the landscape. The 16S rDNA gene was used to detect AOBs in the sediment and water sampled from the three types of disused mining ponds, namely ponds without secondary activity, ponds that were used for lotus cultivation and post-aquaculture ponds. When the varying pond types were compared with the sequence and phylogenetic analysis of the AOB clone libraries, both Nitrosomonas and Nitrosospira-like AOB were detected though Nitrosospira spp. was seen to be the most ubiquitous AOB as it was present in all ponds types. However, AOBs were not detected in the sediments of idle ponds. Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture indicated the highest richness of AOBs. Canonical correspondence analysis indicated that among the physicochemical properties of the pond sites, TAN and nitrite were shown to be the main factors that influenced the community structure of AOBs in these disused tin-mining ponds.
Crude methanol extracts of a marine sponge, Aaptos aaptos, collected from three different localities namely Kapas, Perhentian and Redang Islands, Terengganu, Malaysia, were tested in vitro on a pathogenic Acanthamoeba castellanii (IMR isolate) to examine their anti-amoebic potential. The examination of anti-Acanthamoebic activity of the extracts was conducted in 24 well plates for 72 h at 30 °C. All extracts possessed anti-amoebic activity with their IC(50) values ranging from 0.615 to 0.876 mg/mL. The effect of the methanol extracts on the surface morphology of A. castellanii was analysed under scanning electron microscopy. The ability of the extracts to disrupt the amoeba cell membrane was indicated by extensive cell's blebbing, changes in the surface morphology, reduced in cell size and with cystic appearance of extract-treated Acanthamoeba. Number of acanthapodia and food cup was also reduced in this Acanthamoeba. Morphological criteria of apoptosis in Acanthamoeba following treatment with the sponge's extracts was determined by acridine orange-propidium iodide staining and observed by fluorescence microscopy. By this technique, apoptotic and necrotic cells can be visualized and quantified. The genotoxic potential of the methanol extracts was performed by the alkaline comet assay. All methanol extracts used were significantly induced DNA damage compared to untreated Acanthamoeba by having high percentage of scores 1, 2, and 3 of the DNA damage. Results from cytotoxicity and genotoxicity studies carried out in the present study suggest that all methanol extracts of A. aaptos have anti-amoebic properties against A. castellanii.
The present study aimed to isolate actinobacteria from soil samples and characterized them using molecular tools and screened their secondary metabolites for antimicrobial activities. Thirty-nine strains from four different location of Barrientos Island, Antarctica using 12 types of isolation media was isolated. The isolates were preceded to screening of secondary metabolites for antimicrobial and antifungal activities. Using high-throughput screening methods, 38% (15/39) of isolates produced bioactive metabolites. Approximately 18% (7/39), 18% (7/39), 10% (4/39) and 2.5% (1/39) of isolates inhibited growth of Candida albicans ATCC 10231(T), Staphylococcus aurues ATCC 51650(T), methicillin-resistant Staphylococcus aurues (MRSA) ATCC BAA-44(T) and Pseudomonas aeruginosa ATCC 10145(T), respectively. Molecular characterization techniques like 16S rRNA analysis, Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), Random amplified polymorphic DNA (RAPD) and composite analyses were used to characterize the actinobacteria strains. Analysis of 16S rRNA sequences is still one of the most powerful methods to determine higher taxonomic relationships of Actinobacteria. Both RAPD and ERIC-PCR fingerprinting have shown good discriminatory capability but RAPD proved to be better in discriminatory power than ERIC-PCR. Our results demonstrated that composite analysis of both fingerprinting generally increased the discrimination ability and generated best clustering for actinobacteria strains in this study.
The successful establishment of an Agrobacterium-mediated transformation method and optimisation of six critical parameters known to influence the efficacy of Agrobacterium T-DNA transfer in the unicellular microalga Chlorella vulgaris (UMT-M1) are reported. Agrobacterium tumefaciens strain LBA4404 harbouring the binary vector pCAMBIA1304 containing the gfp:gusA fusion reporter and a hygromycin phosphotransferase (hpt) selectable marker driven by the CaMV35S promoter were used for transformation. Transformation frequency was assessed by monitoring transient β-glucuronidase (GUS) expression 2 days post-infection. It was found that co-cultivation temperature at 24°C, co-cultivation medium at pH 5.5, 3 days of co-cultivation, 150 μM acetosyringone, Agrobacterium density of 1.0 units (OD(600)) and 2 days of pre-culture were optimum variables which produced the highest number of GUS-positive cells (8.8-20.1%) when each of these parameters was optimised individually. Transformation conducted with the combination of all optimal parameters above produced 25.0% of GUS-positive cells, which was almost a threefold increase from 8.9% obtained from un-optimised parameters. Evidence of transformation was further confirmed in 30% of 30 randomly-selected hygromycin B (20 mg L(-1)) resistant colonies by polymerase chain reaction (PCR) using gfp:gusA and hpt-specific primers. The developed transformation method is expected to facilitate the genetic improvement of this commercially-important microalga.
A disposable horseradish peroxidase (HRP)-based electrochemical genosensor was developed for chronoamperometric detection of single-stranded asymmetric lolB gene PCR amplicon (118 bp in length) of the food-borne pathogen, Vibrio cholerae. A two-step sandwich-type hybridization strategy using two specific probes was employed for specific detection of the target single-stranded DNA (ssDNA). The analytical performances of the detection platform have been evaluated using a synthetic ssDNA (ST3) which was identical to the target single-stranded amplicon and a total of 19 bacterial strains. Under optimal condition, ST3 was calibrated with a dynamic range of 0.4883-15.6250 nM. By coupling asymmetric PCR amplification, the probe-based electrochemical genosensor was highly specific to the target organism (100% specificity) and able to detect as little as 0.85 ng/μl of V. cholerae genomic DNA.
Purification of RNA fragments from a complex mixture is a very common technique, and requires consideration of the time, cost, purity and yield of the purified RNA fragments. This study describes the fastest method of purifying small RNA with the lowest cost possible, without compromizing the yield and purity. The technique describes the purification of small RNA from polyacrylamide gel, resulting in a good yield of small RNA with minimum experimental steps in avoiding degradation of the RNA, obviating the use of ethidium bromide and phenol-chloroform extraction, as well as siliconized glass wools to remove the polyacrylamide gel particles. The purified small RNA is suitable for a wide variety of applications such as ligation, end labelling with radio isotope, RT-PCR (Reverse Transcriptase-PCR), Northern blotting, experimental RNomics study and also Systematic Evolution of Ligands by Exponential Enrichment (SELEX).
A chemically defined medium called KGm medium was used to isolate from a sample of sea water a bacterial strain, MW3A, capable of using N-3-oxohexanoyl-L: -homoserine lactone as the sole carbon source. MW3A was clustered closely to Pseudomonas aeruginosa by 16S ribosomal DNA sequence analysis. It degraded both N-acylhomoserine lactones (AHLs) with a 3-oxo group substitution and, less preferably, AHLs with unsubstituted groups at C3 position in the acyl side chain, as determined by Rapid Resolution Liquid Chromatography. Its quiP and pvdQ homologue gene sequences showed high similarities to those of known acylases. Spent supernatant of MW3A harvested at 8-h post inoculation was shown to contain long-chain AHLs when assayed with the biosensor Escherichia coli [pSB1075], and specifically N-dodecanoyl-L: -homoserine lactone and N-3-oxotetradecanoyl-L: -homoserine lactone by high resolution mass spectrometry. Hence, we report here a novel marine P. aeruginosa strain MW3A possessing both quorum-quenching and quorum-sensing properties.
A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm(2)) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l(-1), both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l(-1) phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l(-1). However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.
This article presents the abilities and efficiencies of five different strains of Agrobacterium rhizogenes (strain ATCC 31798, ATCC 43057, AR12, A4 and A13) to induce hairy roots on Solanum mammosum through genetic transformation. There is significant difference in the transformation efficiency (average number of days of hairy root induction) and transformation frequency for all strains of A. rhizogenes (P < 0.05). Both A. rhizogenes strain AR12 and A13 were able to induce hairy root at 6 days of co-cultivation, which were the fastest among those tested. However, the transformation frequencies of all five strains were below 30 %, with A. rhizogenes strain A4 and A13 showing the highest, which were 21.41 ± 10.60 % and 21.43 ± 8.13 % respectively. Subsequently, the cultures for five different hairy root lines generated by five different strains of bacteria were established. However, different hairy root lines showed different growth index under the same culture condition, with the hairy root lines induced by A. rhizogenes strain ATCC 31798 exhibited largest increase in fresh biomass at 45 days of culture under 16 h light/8 h dark photoperiod in half-strength MS medium. The slowest growing hairy root line, which was previously induced by A. rhizogenes strain A13, when cultured in optimized half-strength MS medium containing 1.5 times the standard amount of ammonium nitrate and potassium nitrate and 5 % (w/v) sucrose, had exhibited improvement in growth index, that is, the fresh biomass was almost double as compared to its initial growth in unmodified half-strength MS medium.
White rot fungi are good lignin degraders and have the potential to be used in industry. In the present work, Phellinus sp., Daedalea sp., Trametes versicolor and Pycnoporus coccineus were selected due to their relatively high ligninolytic enzyme activity, and grown on Acacia mangium wood chips under solid state fermentation. Results obtained showed that manganese peroxidase produced is far more compared to lignin peroxidase, suggesting that MnP might be the predominating enzymes causing lignin degradation in Acacia mangium wood chips. Cellulase enzyme assays showed that no significant cellulase activity was detected in the enzyme preparation of T. versicolor and Phellinus sp. This low cellulolytic activity further suggests that these two white rot strains are of more interest in lignin degradation. The results on lignin losses showed 20-30% of lignin breakdown at 60 days of biodegradation. The highest lignin loss was found in Acacia mangium biotreated with T. versicolor after 60 days and recorded 26.9%, corresponding to the percentage of their wood weight loss recorded followed by P. coccineus. In general, lignin degradation was only significant from 20 days onwards. The overall percentage of lignin weight loss was within the range of 1.02-26.90% over the biodegradation periods. Microscopic observations conducted using scanning electron microscope showed that T. versicolor, P. coccineus, Daedalea sp. and Phellinus sp. had caused lignin degradation in Acacia mangium wood chips.
Psychrophiles are organisms that thrive in cold environments. One of the strategies for their cold adaptation is the ability to synthesize cold-adapted enzymes. These enzymes usually display higher catalytic efficiency and thermolability at lower temperatures compared to their mesophilic and thermophilic counterparts. In this work, a psychrophilic bacterial isolate codenamed π9 was selected for the cloning of the gene encoding triose phosphate isomerase (TIM), an enzyme in the glycolytic pathway. Based on 16S rRNA gene sequence analysis, this isolate was identified as a species of the genus Pseudomonas under the P. fluorescens group. The cloning of a 816 bp fragment of TIM gene which covers the 756 bp open reading frame was achieved by a combination of degenerate and splinkerette PCRs. The partial sequence of this gene was first PCR amplified by using degenerate primers and the flanking sequences were subsequently amplified by splinkerette PCR technique. Amino acid sequence of the cloned TIM was 97% identical to TIM from Pseudomonas fluorescens and shared 51% identity with the TIM from psychrophilic Vibrio sp. This work demonstrated the use of multiple PCR techniques to clone a gene without prior knowledge of its sequence. The cloning of the TIM gene by PCR was more rapid and cost effective compared to the traditional genomic library construction and screening method. Homology model of the TIM protein in this study was generated based on Escherichia coli TIM crystal structure. The model could serve as a hypothetical TIM structure from a psychrophilic microorganism for further investigation into areas that showed deviations from the known mesophilic TIM structures.
Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.
Pleurotus citrinopileatus (yellow oyster mushroom) has an attractive shape and yellow colour but the fragile texture complicates packaging, and its strong aroma is unappealing to consumers. This study aimed to improve the characteristics and yield of P. citrinopileatus by interspecies mating between monokaryotic cultures of P. citrinopileatus and P. pulmonarius. Ten monokaryon cultures of the parental lines were crossed in all combinations to obtain hybrids. Eleven compatible mating pairs were obtained and cultivated to observe their sporophore morphology and yield. The selected hybrid, i.e. P1xC9, was beige in colour while hybrid P3xC8 was yellow in colour. Their sporophores had less offensive aroma, improved texture and higher yield. The DNA sequences of these hybrids were found to be in the same clade as the P. citrinopileatus parent with a bootstrap value of 99%. High bootstrap values indicate high genetic homology between hybrids and the P. citrinopileatus parent. The biological efficiencies of these hybrids P1xC9 (70.97%) and P3xC8 (52.14%) were also higher than the P. citrinopileatus parent (35.63%). Interspecies hybrids obtained by this mating technique can lead to better strains of mushrooms for genetic improvement of the Pleurotus species.
The simultaneous production of hydrogen and ethanol by microorganisms from waste materials in a bioreactor system would establish cost-effective and time-saving biofuel production. This review aims to present the current status of fermentation processes producing hydrogen accompanied by ethanol as a co-product. We outlined the microbes used and their fundamental pathways for hydrogen and ethanol fermentation. Moreover, we discussed the exploitation of renewable and sustainable waste materials as promising feedstock and the limitations encountered. The low substrate bioconversion rate in hydrogen and ethanol co-production is regarded as the primary constraint towards the development of large scale applications. Thus, microbes with an enhanced capability have been generated via genetic manipulation to diminish the inefficiency of substrate consumption. In this review, other potential approaches to improve the performance of co-production through fermentation were also elaborated. This review will be a useful guide for the future development of hydrogen and ethanol co-production using waste materials.