OBJECTIVE: To provide an overview of traditional medicinal claims, pharmacological properties, and phytochemical principles of P. kotschyi as a basis for its clinical applications and further research and development of new drugs.
METHODS: Through interpreting already published scientific manuscripts retrieved from different scientific search engines, namely, Medline, PubMed, EMBASE, Science Direct and Google scholar databases, an up-to-date review on the medicinal potentials of P. kotschyi from inception until September, 2020 was compiled. 'Pseudocedrela kotschyi', 'traditional uses', 'pharmacological properties' and 'chemical constituents' were used as search words.
RESULTS: At present, more than 30 chemical constituents have been isolated and identified from the root and stem bark of P. kotschyi, among which limonoids and triterpenes are the main active constituents. Based on prior research, P. kotschyi has been reported to possess anti-inflammatory, analgesic, antipyretic, anthelminthic, antimalaria, anti-leishmaniasis, anti-trypanosomiasis, hepatoprotective, antioxidant, antidiabetic, antidiarrheal, antimicrobial, and anticancer effects.
CONCLUSIONS: P. kotschyi is reported to be effective in treating a variety of diseases. Current phytochemical and pharmacological studies mainly focus on antimalaria, anti-leishmaniasis, anti-trypanosomiasis and anticancer potential of the root and stem bark of P. kotschyi. Although experimental data support the beneficial medicinal properties of this plant, there is still a paucity of information on its toxicity profile. Nonetheless, this review provides the basis for future research work.
RESULTS: The result showed that the microwave-assisted extraction of Micromelum minutum leaf polysaccharide (MMLP) using DES as an extraction media (MMLP-DES) gave a higher yield (improvement of 101.20 %) than citric acid monohydrate (CAM) (MMLP-CAM) and required a lower percentage of microwave power (19.83 % less) and time (0.78 min less). The properties of MMLPs significantly differ based on their pH, molecular weight, viscosity, degree of esterification and monosaccharide molar ratio which influenced the biological activities. Compared to MMLP-CAM, MMLP-DES had a more branched and less linear structure. The bioactivities study revealed that MMLP-DES exhibited higher antioxidant and anti-α-amylase activities (i.e.
, DPPH: 74.52 %, FRAP: 2.87 mM FeSO4 and α-amylase inhibition: 86.23 %) compared to MMLP-CAM (i.e.
, DPPH: 49.33 %, FRAP: 1.49 mM FeSO4, and α-amylase inhibition: 81.76 %). The mechanism and structure-activity relationship of MMLPs on bioactivities were also hypothesized.
SIGNIFICANCE: Based on our previous study, the citric acid monohydrate-glycerol based DES as an extraction medium has enhanced the extraction yield of polysaccharides from M. minutum. This study highlights the DES combined with microwave-assisted extraction to improve the yield of MMLP and evaluate the biological activities compared to CAM as a classical solvent. In conclusion, the DES showed the advantages for extraction of polysaccharides with desired biological activities.