Eight new limonoids, walsogynes H-O (1-8) were isolated from the barks of Walsura chrysogyne, and their structures were determined on the basis of the 1D and 2D NMR data. Walsogynes H-M (1-6) and O (8) were concluded to be 11,12-seco limonoids with a dodecahydro-1H-naphtho[1,8-bc:3,4-c']difuran skeleton, and walsogyne N (7) to be 11,12-seco limonoid sharing a unique dodecahydronaphtho[1,8-bc:5,4-b'c']difuran skeleton. Walsogynes H-O (1-8) exhibited potent antimalarial activity against Plasmodium falciparum 3D7 strain with IC50 value of 2.5, 2.6, 1.6, 2.5, 1.5, 2.6, 2.1, and 1.1 µM, respectively.
Ceramicines are a series of limonoids which were isolated from the bark of Malaysian Chisocheton ceramicus (Meliaceae) and show various biological activities. Ceramicine B, in particular, has been reported to show a strong lipid droplet accumulation (LDA) inhibitory activity on a mouse pre-adipocyte cell line (MC3T3-G2/PA6). With the purpose of discovering compounds with stronger activity than ceramicine B, we further investigated the constituents of C. ceramicus. As a result, from the bark of C. ceramicus four new ceramicines (ceramicines M-P, 1-4) were isolated, and their structures were determined on the basis of NMR and mass spectroscopic analyses in combination with NMR chemical shift calculations. LDA inhibitory activity of 1-4 was evaluated. Compounds 1-3 showed LDA inhibitory activity, and 3 showed better selectivity than ceramicine B while showing activity at the same order of magnitude as ceramicine B. Since 3, which possess a carbonyl group at C-7, showed better selectivity than 5, which possess a 7α-OH group, while showing activity at the same order of magnitude as 5, we also investigated the effect of the substituent at C-7 by synthesizing several derivatives and evaluating their LDA inhibitory activity. Accordingly, we confirmed the importance of the presence of a 7α-OH group to the LDA inhibitory activity.
Five new limonoids, swieteliacates A-E (1-5) and a tirucallane-type triterpenoid, swietesenin (6), together with four known compounds (7-10) were isolated from fruit of Swietenia macrophylla. Their structures were determined by spectroscopic analyses. The new compounds were tested in vitro for their cytotoxic effects against five human cancer cell lines. Compound 2 exhibited moderate cytotoxic activities against SW480 and HL-60 cancer cell lines with IC50 values of 30.6 and 32.9μM, respectively.
Microbial-catalyzed biotransformations have considerable potential for the generation of an enormous variety of structurally diversified organic compounds, especially natural products with complex structures like triterpenoids. They offer efficient and economical ways to produce semi-synthetic analogues and novel lead molecules. Microorganisms such as bacteria and fungi could catalyze chemo-, regio- and stereospecific hydroxylations of diverse triterpenoid substrates that are extremely difficult to produce by chemical routes. During recent years, considerable research has been performed on the microbial transformation of bioactive triterpenoids, in order to obtain biologically active molecules with diverse structures features. This article reviews the microbial modifications of tetranortriterpenoids, tetracyclic triterpenoids and pentacyclic triterpenoids.
Three new limonoids, chisomicines A-C (1-3), have been isolated from the bark of Chisocheton ceramicus. Their structures were determined by 2D NMR, CD spectroscopic methods, and X-ray analysis. Chisomicine A (1) exhibited NO production inhibitory activity in J774.1 cells stimulated by LPS dose-dependently at high cell viability.
Five new cytotoxic limonoids, erythrocarpines A-E (1-5), were isolated from the bark of Chisocheton erythrocarpus Hiern. Chemical structures, stereochemistry, and conformation were fully elucidated and characterized by 2D NMR, MS, and computational methods.
A new limonoid, pentandricine (1), along with three known limonoids, ceramicine B (2), 6-de(acetyloxy)-23-oxochisocheton (3), 6-de(acetyloxy)-23-oxo-7-O-deacetylchisocheton (4), have been isolated from the stembark of Chisocheton pentandrus. The chemical structures of the new compound were elucidated on the basis of spectroscopic evidence. All of the compounds were tested for their cytotoxic effects against MCF-7 breast cancer cells. Compounds 1-4 showed weak and no cytotoxicity against MCF-7 breast cancer cells with IC50 values of 369.84, 150.86, 208.93 and 120.09 μM, respectively.
The ceramicines, a series of limonoids from Chisocheton ceramicus (Meliaceae), were evaluated for anti-melanin deposition activity on α-melanocyte stimulating hormone (α-MSH) and 3-isobutyl-1-methylxanthine (IBMX)-treated B16-F10 melanoma cell, and several ceramicines were found to be active. The structure-activity relationship of ceramicines as anti-melanin deposition inhibitors was deduced. Furthermore, the mechanism of anti-melanin deposition activity of ceramicine B, a major constituent of C. ceramicus that showed potent anti-melanin deposition activity, was investigated. Tyrosinase enzymatic activity and tyrosinase mRNA expression were not affected by ceramicine B. The anti-melanin deposition activity of ceramicine B was shown to be related to the downregulation of tyrosinase protein expression. These results suggest that ceramicines have potential to be used as depigmentation agents.
AIM: The aim of this study is to evaluate the antimicrobial activity of Soluneem ™ when used as an irrigating solution along with other commonly used irrigating solution sodium hypochlorite (NaOCl) against Enterococcus faecalis.
MATERIALS AND METHODS: Microorganism used in this study was E. faecalis (Microbial Type Culture Collection 439). Test substance used was Soluneem ™, which was obtained from Vittal Mallya Scientific Research Foundation (VMSRF), Bengaluru. This study was conducted in a microbiology laboratory (Biocare Research India Pvt., Ltd. Laboratory, Ahmedabad, Gujarat) to evaluate the antimicrobial effect of Soluneem ™ (Azadirachtin) on E. faecalis. Antimicrobial activity testing was performed using the macrobroth dilution method according to the Clinical Laboratory Standards Institute guidelines. All determinations were performed thrice.
RESULTS: Minimum bactericidal concentration (MBC) was seen as 2.6% for Soluneem ™ while the same was seen at 0.1% for NaOCl. Independent sample t-test was carried out to compare the MBC of Soluneem ™ and NaOCl, which showed that there was no statistically significant difference between them, i.e., 2.6% Soluneem ™ was as effective as 0.1% NaOCl.
CONCLUSION: Soluneem ™ showed antimicrobial activity against E. faecalis at various concentrations. It was also found that the efficacy of Soluneem ™ at 2.6% concentration and above was relatively similar to that of gold standard irrigating solution (NaOCl) on inhibition of E. faecalis.
Inflammation and compromised immune responses often increase colorectal cancer (CRC) risk. The immune-modulating effects of limonin on carcinogen/inflammation-induced colorectal cancer (CRC) were studied in mice. Male Balb/c mice were randomly assorted into three groups (n = 6): healthy control, non-treated CRC-induced (azoxymethane/dextran-sulfate-sodium AOM/DSS) control, and CRC-induced + 50 mg limonin/kg body weight. The CRC developments were monitored via macroscopic, histopathological, ELISA, and mRNA expression analyses. Limonin downregulated inflammation (TNF-α, tumor necrosis factor-α), enhanced the adaptive immune responses (CD8, CD4, and CD19), and upregulated antioxidant defense (Nrf2, SOD2) mRNA expressions. Limonin reduced serum malondialdehyde (MDA, lipid peroxidation biomarker), prostaglandin E2, and histopathology inflammation scores, while increasing reduced glutathione (GSH) in CRC-induced mice. Limonin significantly (p
Nimbolide, a triterpenoid isolated from flower of neem tree possess various therapeutic properties. The objective of the study was to assess the anti-arthritic activity of nimbolide in arthritis induced rats. Nimbolide (20 mg/kg per day) was given orally to arthritic rats induced with Complete Freund's Adjuvant and changes in paw volume, body weight, organ indices (thymus and spleen), arthritic score, biochemical parameters and proinflammatory cytokines levels were determined. Histopathological analysis was also performed. Western blot analysis was also performed. Rats treated with nimbolide displayed marked reduction in arthritic score, organ indices, volume of paw, edema formation, along with substantial enhancement in body weight. Histopathological findings showed significant reduction in destruction of joints and inflammation following nimbolide treatment. The protective action of arthritic rats treated with nimbolide was also substantiated by molecular and biochemical studies. The results of the study show that nimbolide treatment has markedly enhanced health and reduced inflammation via lessening the proinflammatory cytokines expression in arthritic rats. Hence, nimbolide may be used as a potent therapeutic drug in treating rheumatoid arthritis.
Matched MeSH terms: Limonins/pharmacology*; Limonins/therapeutic use
The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC(50) value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.