METHODS: Lizardfish bone collagens were extracted with various acids (i.e., acetic, lactic and citric acids). All extraction processes were conducted in a chiller room (4 °C). The extracted collagens were biochemically characterized, such as hydroxyproline content, Ultraviolet (UV) absorption, X-ray diffraction (XRD), Fourier transform infrared spectroscopy spectra (FTIR), Differential scanning calorimetry (DSC) and solubility in different pH values and NaCl concentrations.
RESULTS: The yield of extracted collagens ranged between 1.73% and 2.59%, with the highest (p collagen (CaEC). Protein patterns confirmed that all-collagen samples had two identical subunits, α1 and α2, representing type I collagen. The highest whiteness value was found in acetic acid-extracted collagen (AaEC), but there was no significant difference (p ≥ 0.05) compared to lactic acid-extracted collagen (LaEC). UV absorption and XRD analysis reflected the characteristics of the collagen, as reported in the literature. For the FTIR, all acid-extracted collagen samples presented a triple helical structure. The thermal transition temperature (T max = 77.92-89.04 °C) was in accordance with collagen extracted from other fish species. All extracted collagens were highly soluble in acidic pH and low concentrations of NaCl (0-20 g/L). In conclusion, collagens extracted from lizardfish bone may be used as alternative sources of collagen in industrial settings, and AaEC would be considered superior in terms of the characteristics evaluated in this study.
Methods: The genes were transferred into chondrocytes at passage-1 (P1) via lipofection. The post-transfected chondrocytes (SOX9-, TERT- and SOX9/TERT) were analysed at P1, P2 and P3. The non-transfected group was used as control. The 3D culture was established using the chondrocytes seeded in a disc-shaped PLGA/fibrin and PLGA scaffolds. The resulting 3D "cells-scaffolds" constructs were analysed at week-1, -2 and -3. The histoarchitecture was evaluated using haematoxylin and eosin, alcian blue and safranin o stains. The quantitative sulphated glycosaminoglycan (sGAG) content was measured using biochemical assay. The cartilage-specific markers expression were analysed via real-time polymerase chain reaction.
Results: All monolayer cultured chondrocytes showed flattened, fibroblast-like appearance throughout passages. Proteoglycan and sGAG were not detected at the pericellular matrix region of the chondrocytes. The sGAG content assay indicated the matrix production depletion in the culture. The cartilage-specific markers, COL2A1 and ACAN, were downregulated. However, the dedifferentiation marker, COL1A1 was upregulated. In 3D "cells-scaffolds" constructs, regardless of transfection groups, chondrocytes seeded in PLGA/fibrin showed a more uniform distribution and produced denser matrix than the PLGA group especially at week-3. Both sGAG and proteoglycan were clearly visualised in the constructs, supported by the increment of sGAG content, quantitatively. Both COL2A1 and ACAN were upregulated in SOX9/TERT-PLGA and SOX9/TERT-PLGA/fibrin respectively. While, COL1A1 was downregulated in SOX9/TERT-PLGA.
Conclusion: These findings indicated that the SOX9/TERT-transfected chondrocytes incorporation into 3D scaffolds facilitates the cartilage regeneration which is viable structurally and functionally.
METHODS: VE-TPGS was added to RF-solution, at RF/VE-TPGS (w/w) ratios of 0.125/0.250 and 0.125/0.500. Demineralized dentine beams were used (10wt.% phosphoric acid), rinsed using deionized-water and analysed using ELISA (Human MMP2 ELISA; Human CTSK/Cathepsin-K for MMP2 and Cathepsin K analysis). AFM of dentine collagen-fibrils structure was done before and after dentine specimens' placement in mineralization solution and tested after 14days in artificial saliva/collagenase (AS/Co) solution. The specimens were tested after 24h in mineralization solution for surface/bulk elastic modulus. Nano-indentation was carried out for each specimen on intertubular-dentine with lateral spacing of 400nm. Reduced elastic-modulus and nano-hardness were calculated and collagen content was determined using hydroxyproline-assay. Micro-Raman were performed. TEM was carried out to study structural variations of dentine-collagen in artificial-saliva (collagenase). Data were presented as mean±standard deviation and analyzed by SPSS v.15, by analysis of variance.
RESULTS: Synergetic effect of VE-TPGS was observed with RF through higher structural integrity of dentine collagen-fibrils shown by TEM/AFM. Superior surface/bulk mechanical stability was shown by nano-indentation/mechanical testing. Improvement in collagenase degradation resistance for hydroxyproline release was observed and lower endogenous-protease release of MMP-2/Cathepsin-K. Raman-analysis analysed chemical interactions between RF and collagen confirming structural-integrity of collagen fibrils after crosslinking. After 24h mineralization, AFM showed mineral depositions in close association with dentine-collagen fibrils with RF/VE-TPGS formulations.
SIGNIFICANCE: Potential synergetic effect of RF/VE-TPGS was observed by reflection of higher structural integrity and conformational-stability of dentine-collagen fibrils.