Displaying publications 1 - 20 of 22 in total

Abstract:
Sort:
  1. Ong LG, Abd-Aziz S, Noraini S, Karim MI, Hassan MA
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):73-9.
    PMID: 15304740
    The oil palm sector is one of the major plantation industries in Malaysia. Palm kernel cake is a byproduct of extracted palm kernel oil. Mostly palm kernel cake is wasted or is mixed with other nutrients and used as animal feed, especially for ruminant animals. Recently, palm kernel cake has been identified as an important ingredient for the formulation of animal feed, and it is also exported especially to Europe, South Korea, and Japan. It can barely be consumed by nonruminant (monogastric) animals owing to the high percentages of hemicellulose and cellulose contents. Palm kernel cake must undergo suitable pretreatment in order to decrease the percentage of hemicellulose and cellulose. One of the methods employed in this study is fermentation with microorganisms, particularly fungi, to partially degrade the hemicellulose and cellulose content. This work focused on the production of enzymes by Aspergillus niger and profiling using palm kernel cake as carbon source.
    Matched MeSH terms: Cellulase/metabolism
  2. Wang M, Han L, Liu S, Zhao X, Yang J, Loh SK, et al.
    Biotechnol J, 2015 Sep;10(9):1424-33.
    PMID: 26121186 DOI: 10.1002/biot.201400723
    Renewable energy from lignocellulosic biomass has been deemed an alternative to depleting fossil fuels. In order to improve this technology, we aim to develop robust mathematical models for the enzymatic lignocellulose degradation process. By analyzing 96 groups of previously published and newly obtained lignocellulose saccharification results and fitting them to Weibull distribution, we discovered Weibull statistics can accurately predict lignocellulose saccharification data, regardless of the type of substrates, enzymes and saccharification conditions. A mathematical model for enzymatic lignocellulose degradation was subsequently constructed based on Weibull statistics. Further analysis of the mathematical structure of the model and experimental saccharification data showed the significance of the two parameters in this model. In particular, the λ value, defined the characteristic time, represents the overall performance of the saccharification system. This suggestion was further supported by statistical analysis of experimental saccharification data and analysis of the glucose production levels when λ and n values change. In conclusion, the constructed Weibull statistics-based model can accurately predict lignocellulose hydrolysis behavior and we can use the λ parameter to assess the overall performance of enzymatic lignocellulose degradation. Advantages and potential applications of the model and the λ value in saccharification performance assessment were discussed.
    Matched MeSH terms: Cellulase/metabolism*
  3. Zakaria MR, Norrrahim MN, Hirata S, Hassan MA
    Bioresour Technol, 2015 Apr;181:263-9.
    PMID: 25659104 DOI: 10.1016/j.biortech.2015.01.072
    Eco-friendly pretreatment methods for lignocellulosic biomass are being developed as alternatives to chemical based methods. Superheated steam (SHS), hot compressed water (HCW) and wet disk milling (WDM) were used individually and with combination to partially remove hemicellulose and alter the lignin composition of recalcitrant structure of oil palm mesocarp fiber (OPMF). The efficiency of the pretreatment methods was evaluated based on the chemical compositions altered, SEM analysis, power consumption and degree of enzymatic digestibility. Hemicellulose removal (94.8%) was more pronounced under HCW compared to SHS, due to maximal contact of water and production of acetic acid which enhanced further degradation of hemicellulose. Subsequent treatment with WDM resulted in defibrillation of OPMF and expansion of the specific surface area thus increasing the conversion of cellulose to glucose. The highest glucose yield was 98.1% (g/g-substrate) when pretreated with HCW (200 °C, 20 min) and WDM which only consumed 9.6 MJ/kg of OPMF.
    Matched MeSH terms: Cellulase/metabolism
  4. Harun R, Danquah MK, Thiruvenkadam S
    Biomed Res Int, 2014;2014:435631.
    PMID: 24971327 DOI: 10.1155/2014/435631
    Effective optimization of microalgae-to-bioethanol process systems hinges on an in-depth characterization of key process parameters relevant to the overall bioprocess engineering. One of the such important variables is the biomass particle size distribution and the effects on saccharification levels and bioethanol titres. This study examined the effects of three different microalgal biomass particle size ranges, 35 μm ≤ x ≤ 90 μm, 125 μm ≤ x ≤ 180 μm, and 295 μm ≤ x ≤ 425 μm, on the degree of enzymatic hydrolysis and bioethanol production. Two scenarios were investigated: single enzyme hydrolysis (cellulase) and double enzyme hydrolysis (cellulase and cellobiase). The glucose yield from biomass in the smallest particle size range (35 μm ≤ x ≤ 90 μm) was the highest, 134.73 mg glucose/g algae, while the yield from biomass in the larger particle size range (295 μm ≤ x ≤ 425 μm) was 75.45 mg glucose/g algae. A similar trend was observed for bioethanol yield, with the highest yield of 0.47 g EtOH/g glucose obtained from biomass in the smallest particle size range. The results have shown that the microalgal biomass particle size has a significant effect on enzymatic hydrolysis and bioethanol yield.
    Matched MeSH terms: Cellulase/metabolism
  5. Gunny AA, Arbain D, Edwin Gumba R, Jong BC, Jamal P
    Bioresour Technol, 2014 Mar;155:177-81.
    PMID: 24457303 DOI: 10.1016/j.biortech.2013.12.101
    Ionic liquids (ILs) have been used as an alternative green solvent for lignocelluloses pretreatment. However, being a salt, ILs exhibit an inhibitory effect on cellulases activity, thus making the subsequent saccharification inefficient. The aim of the present study is to produce salt-tolerant cellulases, with the rationale that the enzyme also tolerant to the presence of ILs. The enzyme was produced from a locally isolated halophilic strain and was characterized and assessed for its tolerance to different types of ionic liquids. The results showed that halophilic cellulases produced from Aspergillus terreus UniMAP AA-6 exhibited higher tolerance to ILs and enhanced thermo stability in the presence of high saline conditions.
    Matched MeSH terms: Cellulase/metabolism*
  6. Oskoueian E, Abdullah N, Oskoueian A
    Biomed Res Int, 2013;2013:349129.
    PMID: 24175289 DOI: 10.1155/2013/349129
    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β -glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation.
    Matched MeSH terms: Cellulase/metabolism
  7. Tye YY, Lee KT, Abdullah WN, Leh CP
    Bioresour Technol, 2013 Jul;140:10-14.
    PMID: 23672935 DOI: 10.1016/j.biortech.2013.04.069
    Various pretreatments on Ceiba pentandra (L.) Gaertn. (kapok) fiber prior to enzymatic hydrolysis for sugar production were optimized in this study. The optimum conditions for water, acid, and alkaline pretreatments were 170°C for 45 min, 120°C for 45 min in 1.0% (v/v) H2SO4 solution and 120°C for 60 min in 2.0% (v/v) NaOH solution, respectively. Among the three pretreatments, the alkaline pretreatment achieved the highest total glucose yield (glucose yield calculated based on the untreated fiber) (38.5%), followed by the water (35.0%) and acid (32.8%) pretreatments. As a result, the relative effectiveness of the pretreatment methods for kapok fiber was verified as alkali>water>acid at the condition stated.
    Matched MeSH terms: Cellulase/metabolism*
  8. Tye YY, Lee KT, Wan Abdullah WN, Leh CP
    Bioresour Technol, 2012 Jul;116:536-9.
    PMID: 22595099 DOI: 10.1016/j.biortech.2012.04.025
    The importance of bioethanol currently has increased tremendously as it can reduce the total dependency on fossil-fuels, especially gasoline, in the transportation sector. In this study, Ceiba pentandra (kapok fiber) was introduced as a new resource for bioethanol production. The results of chemical composition analysis showed that the cellulose (alpha- and beta-) contents were 50.7%. The glucose composition of the fiber was 59.8%. The high glucose content indicated that kapok fiber is a potential substrate for bioethanol production. However, without a pretreatment, the kapok fiber only yielded 0.8% of reducing sugar by enzymatic hydrolysis. Thus, it is necessary to pre-treat the kapok fiber prior to hydrolysis. Taking into account environmentally friendliness, only simple pretreatments with minimum chemical or energy consumption was considered. It was interesting to see that by adopting merely water, acid and alkaline pretreatments, the yield of reducing sugar was increased to 39.1%, 85.2% and >100%, respectively.
    Matched MeSH terms: Cellulase/metabolism
  9. Bahrin EK, Ibrahim MF, Abd Razak MN, Abd-Aziz S, Shah UK, Alitheen N, et al.
    Prep Biochem Biotechnol, 2012;42(2):155-70.
    PMID: 22394064 DOI: 10.1080/10826068.2011.585413
    The response surface method was applied in this study to improve cellulase production from oil palm empty fruit bunch (OPEFB) by Botryosphaeria rhodina. An experimental design based on a two-level factorial was employed to screen the significant environmental factors for cellulase production. The locally isolated fungus Botryosphaeria rhodina was cultivated on OPEFB under solid-state fermentation (SSF). From the analysis of variance (ANOVA), the initial moisture content, amount of substrate, and initial pH of nutrient supplied in the SSF system significantly influenced cellulase production. Then the optimization of the variables was done using the response surface method according to central composite design (CCD). Botryosphaeria rhodina exhibited its best performance with a high predicted value of FPase enzyme production (17.95 U/g) when the initial moisture content was at 24.32%, initial pH of nutrient was 5.96, and 3.98 g of substrate was present. The statistical optimization from actual experiment resulted in a significant increment of FPase production from 3.26 to 17.91 U/g (5.49-fold). High cellulase production at low moisture content is a very rare condition for fungi cultured in solid-state fermentation.
    Matched MeSH terms: Cellulase/metabolism*
  10. Ibrahim MF, Abd-Aziz S, Razak MN, Phang LY, Hassan MA
    Appl Biochem Biotechnol, 2012 Apr;166(7):1615-25.
    PMID: 22391689 DOI: 10.1007/s12010-012-9538-6
    Acetone-butanol-ethanol (ABE) production from renewable resources has been widely reported. In this study, Clostridium butyricum EB6 was employed for ABE fermentation using fermentable sugar derived from treated oil palm empty fruit bunch (OPEFB). A higher amount of ABE (2.61 g/l) was produced in a fermentation using treated OPEFB as the substrate when compared to a glucose based medium that produced 0.24 g/l at pH 5.5. ABE production was increased to 3.47 g/l with a yield of 0.24 g/g at pH 6.0. The fermentation using limited nitrogen concentration of 3 g/l improved the ABE yield by 64%. The study showed that OPEFB has the potential to be applied for renewable ABE production by C. butyricum EB6.
    Matched MeSH terms: Cellulase/metabolism
  11. Zainudin MHM, Mustapha NA, Hassan MA, Bahrin EK, Tokura M, Yasueda H, et al.
    Sci Rep, 2019 09 19;9(1):13526.
    PMID: 31537863 DOI: 10.1038/s41598-019-50126-y
    A thermophilic Thermobifida fusca strain UPMC 901, harboring highly thermostable cellulolytic activity, was successfully isolated from oil palm empty fruit bunch compost. Its endoglucanase had the highest activity at 24 hours of incubation in carboxymethyl-cellulose (CMC) and filter paper. A maximum endoglucanase activity of 0.9 U/mL was achieved at pH 5 and 60 °C using CMC as a carbon source. The endoglucanase properties were further characterized using crude enzyme preparations from the culture supernatant. Thermal stability indicated that the endoglucanase activity was highly stable at 70 °C for 24 hours. Furthermore, the activity was found to be completely maintained without any loss at 50 °C and 60 °C for 144 hours, making it the most stable than other endoglucanases reported in the literature. The high stability of the endoglucanase at an elevated temperature for a prolonged period of time makes it a suitable candidate for the biorefinery application.
    Matched MeSH terms: Cellulase/metabolism*
  12. Phan CW, Sabaratnam V
    Appl Microbiol Biotechnol, 2012 Nov;96(4):863-73.
    PMID: 23053096 DOI: 10.1007/s00253-012-4446-9
    Mushroom industries generate a virtually in-exhaustible supply of a co-product called spent mushroom substrate (SMS). This is the unutilised substrate and the mushroom mycelium left after harvesting of mushrooms. As the mushroom industry is steadily growing, the volume of SMS generated annually is increasing. In recent years, the mushroom industry has faced challenges in storing and disposing the SMS. The obvious solution is to explore new applications of SMS. There has been considerable discussion recently about the potentials of using SMS for production of value-added products. One of them is production of lignocellulosic enzymes such as laccase, xylanase, lignin peroxidase, cellulase and hemicellulase. This paper reviews scientific research and practical applications of SMS as a readily available and cheap source of enzymes for bioremediation, animal feed and energy feedstock.
    Matched MeSH terms: Cellulase/metabolism
  13. Mohamad Zabidi NA, Foo HL, Loh TC, Mohamad R, Abdul Rahim R
    Molecules, 2020 Jun 03;25(11).
    PMID: 32503356 DOI: 10.3390/molecules25112607
    Lactobacillus plantarum RI 11 was reported recently to be a potential lignocellulosic biomass degrader since it has the capability of producing versatile extracellular cellulolytic and hemicellulolytic enzymes. Thus, this study was conducted to evaluate further the effects of various renewable natural polymers on the growth and production of extracellular cellulolytic and hemicellulolytic enzymes by this novel isolate. Basal medium supplemented with molasses and yeast extract produced the highest cell biomass (log 10.51 CFU/mL) and extracellular endoglucanase (11.70 µg/min/mg), exoglucanase (9.99 µg/min/mg), β-glucosidase (10.43 nmol/min/mg), and mannanase (8.03 µg/min/mg), respectively. Subsequently, a statistical optimization approach was employed for the enhancement of cell biomass, and cellulolytic and hemicellulolytic enzyme productions. Basal medium that supplemented with glucose, molasses and soybean pulp (F5 medium) or with rice straw, yeast extract and soybean pulp (F6 medium) produced the highest cell population of log 11.76 CFU/mL, respectively. However, formulated F12 medium supplemented with glucose, molasses and palm kernel cake enhanced extracellular endoglucanase (4 folds), exoglucanase (2.6 folds) and mannanase (2.6 folds) specific activities significantly, indicating that the F12 medium could induce the highest production of extracellular cellulolytic and hemicellulolytic enzymes concomitantly. In conclusion, L. plantarum RI 11 is a promising and versatile bio-transformation agent for lignocellulolytic biomass.
    Matched MeSH terms: Cellulase/metabolism*
  14. Abdul Karim MH, Lam MQ, Chen SJ, Yahya A, Shahir S, Shamsir MS, et al.
    Arch Microbiol, 2020 Nov;202(9):2591-2597.
    PMID: 32607725 DOI: 10.1007/s00203-020-01967-z
    To date, the genus Parvularcula consists of 6 species and no potential application of this genus was reported. Current study presents the genome sequence of Parvularcula flava strain NH6-79 T and its cellulolytic enzyme analysis. The assembled draft genome of strain NH6-79 T consists of 9 contigs and 7 scaffolds with 3.68 Mbp in size and GC content of 59.87%. From a total of 3,465 genes predicted, 96 of them are annotated as glycoside hydrolases (GHs). Within these GHs, 20 encoded genes are related to cellulosic biomass degradation, including 12 endoglucanases (5 GH10, 4 GH5, and 3 GH51), 2 exoglucanases (GH9) and 6 β-glucosidases (GH3). In addition, highest relative enzyme activities (endoglucanase, exoglucanase, and β-glucosidase) were observed at 27th hour when the strain was cultured in the carboxymethyl cellulose/Avicel®-containing medium for 45 h. The combination of genome analysis with experimental studies indicated the ability of strain NH6-79 T to produce extracellular endoglucanase, exoglucanase, and β-glucosidase. These findings suggest the potential of Parvularcula flava strain NH6-79 T in cellulose-containing biomass degradation and that the strain could be used in cellulosic biorefining process.
    Matched MeSH terms: Cellulase/metabolism
  15. Nazarpour F, Abdullah DK, Abdullah N, Motedayen N, Zamiri R
    Biomed Res Int, 2013;2013:268349.
    PMID: 24167813 DOI: 10.1155/2013/268349
    Rubberwood (Hevea brasiliensis), a potential raw material for bioethanol production due to its high cellulose content, was used as a novel feedstock for enzymatic hydrolysis and bioethanol production using biological pretreatment. To improve ethanol production, rubberwood was pretreated with white rot fungus Ceriporiopsis subvermispora to increase fermentation efficiency. The effects of particle size of rubberwood (1 mm, 0.5 mm, and 0.25 mm) and pretreatment time on the biological pretreatment were first determined by chemical analysis and X-ray diffraction and their best condition obtained with 1 mm particle size and 90 days pretreatment. Further morphological study on rubberwood with 1 mm particle size pretreated by fungus was performed by FT-IR spectra analysis and SEM observation and the result indicated the ability of this fungus for pretreatment. A study on enzymatic hydrolysis resulted in an increased sugar yield of 27.67% as compared with untreated rubberwood (2.88%). The maximum ethanol concentration and yield were 17.9 g/L and 53% yield, respectively, after 120 hours. The results obtained demonstrate that rubberwood pretreated by C. subvermispora can be used as an alternative material for the enzymatic hydrolysis and bioethanol production.
    Matched MeSH terms: Cellulase/metabolism*
  16. Al-Qassab AA, Zakaria MR, Yunus R, Salleh MAM, Mokhtar MN
    Int J Biol Macromol, 2024 Sep;276(Pt 2):134030.
    PMID: 39038578 DOI: 10.1016/j.ijbiomac.2024.134030
    This study investigates the synthesis of (hemi)cellulolytic enzymes, including endoglucanase (CMCase), xylanase, and β-glucosidase, employing Trichoderma reesei RUT-C30 and deoiled oil palm mesocarp fiber (OPMF) through solid-state fermentation (SSF). The objective was to determine the optimal process conditions for achieving high enzyme activities through a one-factor-at-a-time approach. The study primarily focused on the impact of the solid-to-liquid ratio, incubation period, initial pH, and temperature on enzyme activity. The effects of OPMF pretreatment, particularly deoiling and fortification, were explored. This approach significantly improved enzyme activity levels compared to the initial conditions, with CMCase increasing by 111.6 %, xylanase by 665.2 %, and β-Glucosidase by 1678.1 %. Xylanase and β-glucosidase activities, peaking at 1346.75 and 9.89 IU per gram dry substrate (GDS), respectively, under optimized conditions (1:4 ratio, pH 7.5, 20 °C, 9-day incubation). With lower moisture levels, CMCase reached its maximum activity of 227.84 IU/GDS. The study highlights how important it is for agro-industrial byproducts to support environmentally sustainable practices in the palm oil industry. It also emphasizes how differently each enzyme reacts to changes in process parameters.
    Matched MeSH terms: Cellulase/metabolism
  17. Gunny AA, Arbain D, Nashef EM, Jamal P
    Bioresour Technol, 2015 Apr;181:297-302.
    PMID: 25661309 DOI: 10.1016/j.biortech.2015.01.057
    Deep Eutectic Solvents (DESs) have recently emerged as a new generation of ionic liquids for lignocellulose pretreatment. However, DESs contain salt components which tend to inactivate cellulase in the subsequent saccharification process. To alleviate this problem, it is necessary to evaluate the applicability of the DESs-Cellulase system. This was accomplished in the present study by first studying the stability of cellulase in the presence of selected DESs followed by applicability evaluation based on glucose production, energy consumption and kinetic performance. Results showed that the cellulase was able to retain more than 90% of its original activity in the presence of 10% (v/v) for glycerol based DES (GLY) and ethylene glycol based DES (EG). Furthermore, both DESs system exhibited higher glucose percentage enhancement and lower energy consumption as compared to diluted alkali system. Among the two DESs studied, EG showed comparatively better kinetic performance.
    Matched MeSH terms: Cellulase/metabolism*
  18. Zakaria MR, Hirata S, Hassan MA
    Bioresour Technol, 2014 Oct;169:236-43.
    PMID: 25058299 DOI: 10.1016/j.biortech.2014.06.095
    Hydrothermal pretreatment of oil palm mesocarp fiber was conducted in tube reactor at treatment severity ranges of log Ro = 3.66-4.83 and partial removal of hemicellulose with migration of lignin was obtained. Concerning maximal recovery of glucose and xylose, 1.5% NaOH was impregnated in the system and subsequent ball milling treatment was employed to improve the conversion yield. The effects of combined hydrothermal and ball milling pretreatments were evaluated by chemical composition changes by using FT-IR, WAXD and morphological alterations by SEM. The successful of pretreatments were assessed by the degree of enzymatic digestibility of treated samples. The highest xylose and glucose yields obtained were 63.2% and 97.3% respectively at cellulase loadings of 10 FPU/g-substrate which is the highest conversion from OPMF ever reported.
    Matched MeSH terms: Cellulase/metabolism*
  19. Zuhainis Saad W, Abdullah N, Alimon AR, Yin Wan H
    Anaerobe, 2008 Apr;14(2):118-22.
    PMID: 18083606
    The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.
    Matched MeSH terms: Cellulase/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links