METHODS: R-hf risk score is derived from the product estimated glomerular filtration rate (mL/min), left ventricular ejection fraction (%), and hemoglobin levels (g/dL) divided by N-terminal pro-brain natriuretic peptide (pg/mL). This was a multinational, multicenter, prospective registry of heart failure from seven countries in the Middle East. Univariable and multivariable logistic regression was applied.
RESULTS: A total of 776 patients (mean age = 62.0±14.0 years, 62.4% males; mean left ventricular ejection fraction = 33.0±14.0%) were included. Of these, 459 (59.1%) presented with acute decompensated chronic heart failure. The R-hf risk score group (≤ 5) was marginally associated with a higher risk of all-cause cumulative mortality at three months (adjusted odds ratio (aOR) = 4.28; 95% CI: 0.90-20.30; p =0.067) and significantly at 12 months (aOR = 3.84; 95% CI: 1.23-12.00; p =0.021) when compared to those with the highest R score group (≥ 50).
CONCLUSIONS: Lower R-hf risk scores are associated with increased risk of all-cause cumulative mortality at three and 12 months.
METHODS: A prospective, multi-centre, multi-country study including patients hospitalized with AHF was conducted. Clinical characteristics, echocardiogram, BNP (B-type natriuretic peptide), socioeconomic status, management, 1-month, and 1-year outcomes are reported.
RESULTS: Between April 2019 and June 2020, a total of 1258 adults with AHF from 16 Arab countries were recruited. Their mean age was 63.3 (±15) years, 56.8% were men, 65% had monthly income ≤US$ 500, and 56% had limited education. Furthermore, 55% had diabetes mellitus, 67% had hypertension; 55% had HFrEF (heart failure with reduced ejection fraction), and 19% had HFpEF (heart failure with preserved ejection fraction). At 1 year, 3.6% had a heart failure-related device (0-22%) and 7.3% used an angiotensin receptor neprilysin inhibitor (0-43%). Mortality was 4.4% per 1 month and 11.77% per 1-year post-discharge. Compared with higher-income patients, lower-income patients had a higher 1-year total heart failure hospitalization rate (45.6 vs 29.9%, p=0.001), and the 1-year mortality difference was not statistically significant (13.2 vs 8.8%, p=0.059).
CONCLUSION: Most of the patients with AHF in Arab countries had a high burden of cardiac risk factors, low income, and low education status with great heterogeneity in key performance indicators of AHF management among Arab countries.
METHODS: This prospective, multi-center, multi-country study is the first report of the baseline characteristics and outcomes of inpatients with AMI who were enrolled during the first 14-month recruitment phase. We report the clinical characteristics, socioeconomic, educational levels, and management, in-hospital, one month and one-year outcomes.
RESULTS: Between April 2019 and June 2020, 1377 patients with AMI were enrolled (79.1% males) from 16 Arabian countries. The mean age (± SD) was 58 ± 12 years. Almost half of the population had a net income < $500/month, and 40% had limited education. Nearly half of the cohort had a history of diabetes mellitus, hypertension, or hypercholesterolemia; 53% had STEMI, and almost half (49.7%) underwent a primary percutaneous intervention (PCI) (lowest 4.5% and highest 100%). Thrombolytics were used by 36.2%. (Lowest 6.45% and highest (90.9%). No reperfusion occurred in 13.8% of patients (lowest was 0% and highest 72.7%).Primary PCI was performed less frequently in the lower income group vs. high income group (26.3% vs. 54.7%; P<0.001). Recurrent ischemia occurred more frequently in the low-income group (10.9% vs. 7%; P = 0.018). Re-admission occurred in 9% at 1 month and 30% at 1 year, whereas 1-month mortality was 0.7% and 1-year mortality 4.7%.
CONCLUSION: In the MENA region, patients with AMI present at a young age and have a high burden of cardiac risk factors. Most of the patients in the registry have a low income and low educational status. There is heterogeneity among key performance indicators of AMI management among various Arabian countries.
METHODS: This retrospective cohort study was conducted on 866 patients from the Gulf Left Main Registry who presented between 2015 and 2019. The study outcome was hospital all-cause mortality. Various machine learning models [logistic regression, random forest (RF), k-nearest neighbor, support vector machine, naïve Bayes, multilayer perception, boosting] were used to predict mortality, and their performance was measured using accuracy, precision, recall, F1 score, and area under the receiver operator characteristic curve (AUC).
RESULTS: Nonsurvivors had significantly greater EuroSCORE II values (1.84 (10.08-3.67) vs. 4.75 (2.54-9.53) %, P<0.001 for survivors and nonsurvivors, respectively). The EuroSCORE II score significantly predicted hospital mortality (OR: 1.13 (95% confidence interval: 1.09-1.18), P<0.001), with an AUC of 0.736. RF achieved the best ML performance (accuracy=98, precision=100, recall=97 and F1 score=98). Explainable artificial intelligence using SHAP demonstrated the most important features as follows: preoperative lactate level, emergency surgery, chronic kidney disease (CKD), NSTEMI, nonsmoking status, and sex. QLattice identified lactate and CKD as the most important factors for predicting hospital mortality this patient group.
CONCLUSION: This study demonstrates the potential of ML, particularly the Random Forest, to accurately predict hospital mortality in patients undergoing CABG for LMCA disease and its superiority over traditional methods. The key risk factors identified, including preoperative lactate levels, emergency surgery, chronic kidney disease, NSTEMI, nonsmoking status, and sex, provide valuable insights for risk stratification and informed decision-making in this high-risk patient population. Additionally, incorporating newly identified risk factors into future risk scoring systems can further improve mortality prediction accuracy.
METHODS: The Gulf-CS registry included 1,513 patients with AMI-CS diagnosed between January 2020 and December 2022.
RESULTS: The incidence of AMI-CS was 4.1% (1513/37379). The median age was 60 years. The most common presentation was ST-elevation MI (73.83%). In-hospital mortality was 45.5%. Majority of patients were in SCAI stage D and E (68.94%). Factors associated with hospital mortality were previous coronary artery bypass graft (OR:2.49; 95%CI: 1.321-4.693), cerebrovascular accident (OR:1.621, 95%CI: 1.032-2.547), chronic kidney disease (OR:1.572; 95%CI1.158-2.136), non-ST-elevation MI (OR:1.744; 95%CI: 1.058-2.873), cardiac arrest (OR:5.702; 95%CI: 3.640-8.933), SCAI stage D and E (OR:19.146; 95CI%: 9.902-37.017), prolonged QRS (OR:10.012; 95%CI: 1.006-1.019), right ventricular dysfunction (OR:1.679; 95%CI: 1.267-2.226) and ventricular septal rupture (OR:6.008; 95%CI: 2.256-15.998). Forty percent had invasive hemodynamic monitoring, 90.02% underwent revascularization, and 45.80% received mechanical circulatory support (41.31% had Intra-Aortic Balloon Pump and 14.21% had Extracorporeal Membrane Oxygenation/Impella devices). Survival at 12 months was 51.49% (95% CI: 46.44- 56.29%).
CONCLUSIONS: The study highlighted the significant burden of AMI-CS in this region, with high in-hospital mortality. The study identified several key risk factors associated with increased hospital mortality. Despite the utilization of invasive hemodynamic monitoring, revascularization, and mechanical circulatory support in a substantial proportion of patients, the 12-month survival rate remained relatively low.