Displaying publications 121 - 140 of 240 in total

Abstract:
Sort:
  1. Abdul Razak S, Scribner KT
    Appl Environ Microbiol, 2020 05 05;86(10).
    PMID: 32169941 DOI: 10.1128/AEM.02662-19
    Gastrointestinal (GI) or gut microbiotas play essential roles in host development and physiology. These roles are influenced partly by the microbial community composition. During early developmental stages, the ecological processes underlying the assembly and successional changes in host GI community composition are influenced by numerous factors, including dispersal from the surrounding environment, age-dependent changes in the gut environment, and changes in dietary regimes. However, the relative importance of these factors to the gut microbiota is not well understood. We examined the effects of environmental (diet and water sources) and host early ontogenetic development on the diversity of and the compositional changes in the gut microbiota of a primitive teleost fish, the lake sturgeon (Acipenser fulvescens), based on massively parallel sequencing of the 16S rRNA gene. Fish larvae were raised in environments that differed in water source (stream versus filtered groundwater) and diet (supplemented versus nonsupplemented Artemia fish). We quantified the gut microbial community structure at three stages (prefeeding and 1 and 2 weeks after exogenous feeding began). The diversity declined and the community composition differed significantly among stages; however, only modest differences associated with dietary or water source treatments were documented. Many taxa present in the gut were over- or underrepresented relative to neutral expectations in each sampling period. The findings indicate dynamic relationships between the gut microbiota composition and host gastrointestinal physiology, with comparatively smaller influences being associated with the rearing environments. Neutral models of community assembly could not be rejected, but selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for sturgeon conservation and aquaculture production specifically and applications of microbe-based management in teleost fish generally.IMPORTANCE We quantified the effects of environment (diet and water sources) and host early ontogenetic development on the diversity of and compositional changes in gut microbial communities based on massively parallel sequencing of the 16S rRNA genes from the GI tracts of larval lake sturgeon (Acipenser fulvescens). The gut microbial community diversity declined and the community composition differed significantly among ontogenetic stages; however, only modest differences associated with dietary or water source treatments were documented. Selectivity associated with microbe-host GI tract interactions through early ontogenetic stages was evident. The results have implications for lake sturgeon and early larval ecology and survival in their natural habitat and for conservation and aquaculture production specifically, as well as applications of microbe-based management in teleost fish generally.
    Matched MeSH terms: Gastrointestinal Microbiome*
  2. Vignesh R, Swathirajan CR, Tun ZH, Rameshkumar MR, Solomon SS, Balakrishnan P
    Front Immunol, 2020;11:607734.
    PMID: 33569053 DOI: 10.3389/fimmu.2020.607734
    Matched MeSH terms: Gastrointestinal Microbiome*
  3. Nur Atikah I, Alimon AR, Yaakub H, Abdullah N, Jahromi MF, Ivan M, et al.
    BMC Vet Res, 2018 Nov 14;14(1):344.
    PMID: 30558590 DOI: 10.1186/s12917-018-1672-0
    BACKGROUND: The effects of the dietary oils with differing fatty acid profiles on rumen fermentation, microbial population, and digestibility in goats were investigated. In Experiment I, rumen microbial population and fermentation profiles were evaluated on 16 fistulated male goats that were randomly assigned to four treatment groups: i) control (CNT), ii) olive oil (OL), iii) palm olein oil (PO), and iv) sunflower oil (SF). In Experiment II, another group of 16 male goats was randomly assigned to the same dietary treatments for digestibility determination.

    RESULTS: Rumen ammonia concentration was higher in CNT group compared to treatment groups receiving dietary oils. The total VFA and acetate concentration were higher in SF and OL groups, which showed that they were significantly affected by the dietary treatments. There were no differences in total microbial population. However, fibre degrading bacteria populations were affected by the interaction between treatment and day of sampling. Significant differences were observed in apparent digestibility of crude protein and ether extract of treatment groups containing dietary oils compared to the control group.

    CONCLUSIONS: This study demonstrated that supplementation of different dietary oils containing different fatty acid profiles improved rumen fermentation by reducing ammonia concentration and increasing total VFA concentration, altering fibre degrading bacteria population, and improving apparent digestibility of crude protein and ether extract.

    Matched MeSH terms: Gastrointestinal Microbiome*
  4. Wei GZ, Martin KA, Xing PY, Agrawal R, Whiley L, Wood TK, et al.
    Proc Natl Acad Sci U S A, 2021 Jul 06;118(27).
    PMID: 34210797 DOI: 10.1073/pnas.2021091118
    While modulatory effects of gut microbes on neurological phenotypes have been reported, the mechanisms remain largely unknown. Here, we demonstrate that indole, a tryptophan metabolite produced by tryptophanase-expressing gut microbes, elicits neurogenic effects in the adult mouse hippocampus. Neurogenesis is reduced in germ-free (GF) mice and in GF mice monocolonized with a single-gene tnaA knockout (KO) mutant Escherichia coli unable to produce indole. External administration of systemic indole increases adult neurogenesis in the dentate gyrus in these mouse models and in specific pathogen-free (SPF) control mice. Indole-treated mice display elevated synaptic markers postsynaptic density protein 95 and synaptophysin, suggesting synaptic maturation effects in vivo. By contrast, neurogenesis is not induced by indole in aryl hydrocarbon receptor KO (AhR-/-) mice or in ex vivo neurospheres derived from them. Neural progenitor cells exposed to indole exit the cell cycle, terminally differentiate, and mature into neurons that display longer and more branched neurites. These effects are not observed with kynurenine, another AhR ligand. The indole-AhR-mediated signaling pathway elevated the expression of β-catenin, Neurog2, and VEGF-α genes, thus identifying a molecular pathway connecting gut microbiota composition and their metabolic function to neurogenesis in the adult hippocampus. Our data have implications for the understanding of mechanisms of brain aging and for potential next-generation therapeutic opportunities.
    Matched MeSH terms: Gastrointestinal Microbiome*
  5. Sargsian S, Mondragón-Palomino O, Lejeune A, Ercelen D, Jin WB, Varghese A, et al.
    Microbiome, 2024 May 10;12(1):86.
    PMID: 38730492 DOI: 10.1186/s40168-024-01793-1
    BACKGROUND: Parasitic helminths influence the composition of the gut microbiome. However, the microbiomes of individuals living in helminth-endemic regions are understudied. The Orang Asli, an indigenous population in Malaysia with high burdens of the helminth Trichuris trichiura, display microbiotas enriched in Clostridiales, an order of spore-forming obligate anaerobes with immunogenic properties. We previously isolated novel Clostridiales that were enriched in these individuals and found that a subset promoted the Trichuris life cycle. In this study, we aimed to further characterize the functional properties of these bacteria.

    RESULTS: Clostridiales isolates were profiled for their ability to perform 57 enzymatic reactions and produce short-chain fatty acids (SCFAs) and hydrogen sulfide, revealing that these bacteria were capable of a range of activities associated with metabolism and host response. Consistent with this finding, monocolonization of mice with individual isolates identified bacteria that were potent inducers of regulatory T-cell (Treg) differentiation in the colon. Comparisons between variables revealed by these studies identified enzymatic properties correlated with Treg induction and Trichuris egg hatching.

    CONCLUSION: We identified Clostridiales species that are sufficient to induce high levels of Tregs. We also identified a set of metabolic activities linked with Treg differentiation and Trichuris egg hatching mediated by these newly isolated bacteria. Altogether, this study provides functional insights into the microbiotas of individuals residing in a helminth-endemic region. Video Abstract.

    Matched MeSH terms: Gastrointestinal Microbiome*
  6. Zhang Y, He Y, Yuan L, Shi J, Zhao J, Tan C, et al.
    Phytomedicine, 2024 Sep;132:155838.
    PMID: 38964153 DOI: 10.1016/j.phymed.2024.155838
    BACKGROUND: Areca nut polyphenols (AP) that extracted from areca nut, have been demonstrated for their potential of anti-fatigue effects. However, the underlying mechanisms for the anti-fatigue properties of AP has not been fully elucidated to date. Previous studies have predominantly concentrated on single aspects, such as antioxidation and anti-inflammation, yet have lacked comprehensive multi-dimensional analyses.

    PURPOSE: To explore the underlying mechanism of AP in exerting anti-fatigue effects.

    METHODS: In this study, we developed a chronic sleep deprivation-induced fatigue model and used physiological, hematological, and biochemical indicators to evaluate the anti- fatigue efficacy of AP. Additionally, a multi-omics approach was employed to reveal the anti-fatigue mechanisms of AP from the perspective of microbiome, metabolome, and proteome.

    RESULTS: The detection of physiology, hematology and biochemistry index indicated that AP markedly alleviate mice fatigue state induced by sleep deprivation. The 16S rRNA sequencing showed the AP promoted the abundance of probiotics (Odoribacter, Dubosiella, Marvinbryantia, and Eubacterium) and suppressed harmful bacteria (Ruminococcus). On the other hand, AP was found to regulate the expression of colonic proteins, such as increases of adenosine triphosphate (ATP) synthesis and mitochondrial function related proteins, including ATP5A1, ATP5O, ATP5L, ATP5H, NDUFA, NDUFB, NDUFS, and NDUFV. Serum metabolomic analysis revealed AP upregulated the levels of anti-fatigue amino acids, such as taurine, leucine, arginine, glutamine, lysine, and l-proline. Hepatic proteins express levels, especially tricarboxylic acid (TCA) cycle (CS, SDHB, MDH2, and DLST) and redox-related proteins (SOD1, SOD2, GPX4, and PRDX3), were significantly recovered by AP administration. Spearman correlation analysis uncovered the strong correlation between microbiome, metabolome and proteome, suggesting the anti-fatigue effects of AP is attribute to the energy homeostasis and redox balance through gut-liver axis.

    CONCLUSION: AP increased colonic ATP production and improve mitochondrial function by regulating gut microbiota, and further upregulated anti-fatigue amino acid levels in the blood. Based on the gut-liver axis, AP upregulated the hepatic tricarboxylic acid cycle and oxidoreductase-related protein expression, regulating energy homeostasis and redox balance, and ultimately exerting anti-fatigue effects. This study provides insights into the anti-fatigue mechanisms of AP, highlighting its potential as a therapeutic agent.

    Matched MeSH terms: Gastrointestinal Microbiome/drug effects
  7. Deng L, Guo H, Wang S, Liu X, Lin Y, Zhang R, et al.
    Oxid Med Cell Longev, 2022;2022:9318721.
    PMID: 35178163 DOI: 10.1155/2022/9318721
    Racemic salbutamol ((RS)-sal), which consist of the same amount of (R)-sal and (S)-sal, has been used for asthma and COPD due to its bronchodilation effect. However, the effect of (R)-sal on repeated dextran sulfate sodium (DSS)-induced chronic colitis has not yet been investigated. In this study evaluated the potential effect of (R)-, (S)-, and (RS)-sal in mice with repeated DSS-induced chronic colitis and investigated the underlying mechanisms. Here, we verified that chronic colitis was significantly attenuated by (R)-sal, which was evidenced by notably mitigated body weight loss, disease activity index (DAI), splenomegaly, colonic lengths shortening, and histopathological scores. (R)-sal treatment noticeably diminished the levels of inflammatory cytokines (such as TNF-α, IL-6, IL-1β, and IFN-γ). Notably, the efficacy of (R)-sal was better than that of (RS)-sal. Further research revealed that (R)-sal mitigated colonic CD4 leukocyte infiltration, decreased NF-κB signaling pathway activation, improved the Nrf-2/HO-1 signaling pathway, and increased the expression of ZO-1 and occludin. In addition, (R)-sal suppressed the levels of TGF-β1, α-SMA, and collagen in mice with chronic colitis. Furthermore, the 16S rDNA sequences analyzed of the intestinal microbiome revealed that (R)-sal could mitigate the intestinal microbiome structure and made it more similar to the control group, which mainly by relieving the relative abundance of pathogens (such as Bacteroides) and increasing the relative abundance of probiotics (such as Akkermansia). Therefore, (R)-sal ameliorates repeated DSS-induced chronic colitis in mice by improving inflammation, suppressing oxidative stress, mitigating intestinal barrier function, relieving intestinal fibrosis, and regulating the intestinal microbiome community. These results indicate that (R)-sal maybe a novel treatment alternative for chronic colitis.
    Matched MeSH terms: Gastrointestinal Microbiome/drug effects*
  8. Firmansyah A, Chongviriyaphan N, Dillon DH, Khan NC, Morita T, Tontisirin K, et al.
    Asia Pac J Clin Nutr, 2016 Dec;25(4):652-675.
    PMID: 27702710 DOI: 10.6133/apjcn.092016.02
    Inulin-based prebiotics are non-digestible polysaccharides that influence the composition of the gut microbiota in infants and children, notably eliciting a bifidogenic effect with high short chain fatty acid levels. Inulin, a generic term that comprises β-(2,1)-linked linear fructans, is typically isolated from the chicory plant root, and derivatives such as oligofructose and long chain inulin appear to have different physiological properties. The first 1000 days of a child's life are increasingly recognized as a critical timeframe for health also into adulthood, whereby nutrition plays a key role. There is an ever increasing association between nutrition and gut microbiota composition and development, with life health status of an individual. This review summarizes the latest knowledge in the infant gut microbiota from preterms to healthy newborns, as well as in malnourished children in developing countries. The impact of inulin or mixtures thereof on infants, toddlers and young children with respect to intestinal function and immunity in general, is reviewed. Possible benefits of prebiotics to support the gut microbiome of malnourished infants and children, especially those with infections in the developing world, are considered, as well as for the pregnant mothers health. Importantly, novel insights in metabolic programming are covered, which are being increasing recognized for remarkable impact on long term offspring health, and eventual potential beneficial role of prebiotic inulins. Overall increasing findings prompt the potential for gut microbiota-based therapy to support health or prevent the development of certain diseases from conception to adulthood where inulin prebiotics may play a role.
    Matched MeSH terms: Gastrointestinal Microbiome*
  9. Lee SC, Chua LL, Yap SH, Khang TF, Leng CY, Raja Azwa RI, et al.
    Sci Rep, 2018 09 24;8(1):14277.
    PMID: 30250162 DOI: 10.1038/s41598-018-32585-x
    We explored the gut microbiota profile among HIV-infected individuals with diverse immune recovery profiles following long-term suppressive ART and investigated the relationship between the altered bacteria with markers of immune dysfunction. The microbiota profile of rectal swabs from 26 HIV-infected individuals and 20 HIV-uninfected controls were examined. Patients were classified as suboptimal responders, sIR (n = 10, CD4 T-cell <350 cells/ul) and optimal responders, oIR (n = 16, CD4 T-cell >500 cells/ul) after a minimum of 2 years on suppressive ART. Canonical correlation analysis(CCA) and multiple regression modelling were used to explore the association between fecal bacterial taxa abundance and immunological profiles in optimal and suboptimal responders. We found Fusobacterium was significantly enriched among the HIV-infected and the sIR group. CCA results showed that Fusobacterium abundance was negatively correlated with CD4 T-cell counts, but positively correlated with CD4 T-cell activation and CD4 Tregs. Multiple linear regression analysis adjusted for age, baseline CD4 T-cell count, antibiotic exposure and MSM status indicated that higher Fusobacterium relative abundance was independently associated with poorer CD4 T-cell recovery following ART. Enrichment of Fusobacterium was associated with reduced immune recovery and persistent immune dysfunction following ART. Modulating the abundance of this bacterial taxa in the gut may be a viable intervention to improve immune reconstitution in our setting.
    Matched MeSH terms: Gastrointestinal Microbiome/genetics; Gastrointestinal Microbiome/immunology
  10. Nami Y, Haghshenas B, Haghshenas M, Abdullah N, Yari Khosroushahi A
    Front Microbiol, 2015;6:1317.
    PMID: 26635778 DOI: 10.3389/fmicb.2015.01317
    Enterococcus lactis IW5 was obtained from human gut and the potential probiotic characteristics of this organism were then evaluated. Results showed that this strain was highly resistant to low pH and high bile salt and adhered strongly to Caco-2 human epithelial colorectal cell lines. The supernatant of E. lactis IW5 strongly inhibited the growth of several pathogenic bacteria and decreased the viability of different cancer cells, such as HeLa, MCF-7, AGS, HT-29, and Caco-2. Conversely, E. lactis IW5 did not inhibit the viability of normal FHs-74 cells. This strain did not generate toxic enzymes, including β-glucosidase, β-glucuronidase, and N-acetyl-β-glucosaminidase and was highly susceptible to ampicillin, gentamycin, penicillin, vancomycin, clindamycin, sulfamethoxazol, and chloramphenicol but resistant to erythromycin and tetracyclin. This study provided evidence for the effect of E. lactis IW5 on cancer cells. Therefore, E. lactis IW5, as a bioactive therapeutics, should be subjected to other relevant tests to verify the therapeutic suitability of this strain for clinical applications.
    Matched MeSH terms: Gastrointestinal Microbiome
  11. Shahjahan M, Kitahashi T, Parhar IS
    PMID: 24723910 DOI: 10.3389/fendo.2014.00036
    Energy balance plays an important role in the control of reproduction. However, the cellular and molecular mechanisms connecting the two systems are not well understood especially in teleosts. The hypothalamus plays a crucial role in the regulation of both energy balance and reproduction, and contains a number of neuropeptides, including gonadotropin-releasing hormone (GnRH), orexin, neuropeptide-Y, ghrelin, pituitary adenylate cyclase-activating polypeptide, α-melanocyte stimulating hormone, melanin-concentrating hormone, cholecystokinin, 26RFamide, nesfatin, kisspeptin, and gonadotropin-inhibitory hormone. These neuropeptides are involved in the control of energy balance and reproduction either directly or indirectly. On the other hand, synthesis and release of these hypothalamic neuropeptides are regulated by metabolic signals from the gut and the adipose tissue. Furthermore, neurons producing these neuropeptides interact with each other, providing neuronal basis of the link between energy balance and reproduction. This review summarizes the advances made in our understanding of the physiological roles of the hypothalamic neuropeptides in energy balance and reproduction in teleosts, and discusses how they interact with GnRH, kisspeptin, and pituitary gonadotropins to control reproduction in teleosts.
    Matched MeSH terms: Gastrointestinal Microbiome
  12. Chong CW, Ahmad AF, Lim YA, Teh CS, Yap IK, Lee SC, et al.
    Sci Rep, 2015;5:13338.
    PMID: 26290472 DOI: 10.1038/srep13338
    Gut microbiota plays an important role in mammalian host metabolism and physiological functions. The functions are particularly important in young children where rapid mental and physical developments are taking place. Nevertheless, little is known about the gut microbiome and the factors that contribute to microbial variation in the gut of South East Asian children. Here, we compared the gut bacterial richness and composition of pre-adolescence in Northern Malaysia. Our subjects covered three distinct ethnic groups with relatively narrow range of socioeconomic discrepancy. These included the Malays (n = 24), Chinese (n = 17) and the Orang Asli (indigenous) (n = 20). Our results suggested a strong ethnicity and socioeconomic-linked bacterial diversity. Highest bacterial diversity was detected from the economically deprived indigenous children while the lowest diversity was recorded from the relatively wealthy Chinese children. In addition, predicted functional metagenome profiling suggested an over-representation of pathways pertinent to bacterial colonisation and chemotaxis in the former while the latter exhibited enriched gene pathways related to sugar metabolism.
    Matched MeSH terms: Gastrointestinal Microbiome
  13. Ismail IH, Lay C, H A Majid N, Lee WS, Lee BW, Abdul Latiff AH, et al.
    J Allergy Clin Immunol, 2020 11;146(5):1005-1007.
    PMID: 32860819 DOI: 10.1016/j.jaci.2020.05.057
    Matched MeSH terms: Gastrointestinal Microbiome
  14. Han Z, Sun J, Lv A, Sung Y, Sun X, Shi H, et al.
    AMB Express, 2018 Apr 02;8(1):52.
    PMID: 29610998 DOI: 10.1186/s13568-018-0578-3
    A modified genomic DNA extraction method named the combination of lysozyme and ultrasonic lysis (CLU) method was used to analyze the fish intestinal microflora. In this method, the physical disruption and chemical lysis steps were combined, and some parameters in the key steps were adjusted. In addition, the results obtained by this method were compared with the results obtained by the Zirmil-beating cell disruption method and the QIAamp Fast DNA Stool Mini Kit. The OD260/OD280ratio and concentration of the DNA extracted using the CLU method were 2.02 and 282.8 µg/µL, respectively; when the incubation temperatures for lysozyme and RNase were adjusted to 37 °C, those values were 2.08 and 309.8 µg/µL, respectively. On the agarose gel, a major high-intensity, discrete band of more than 10 kb was found for the CLU method. However, the smearing intensity of degraded DNA was lower when the incubation temperatures were 60 °C for lysozyme and 30 °C for RNase than when incubation temperatures of 37 °C for lysozyme and 37 °C for RNase were used. The V3 variable region of the prokaryotic 16S rDNA was amplified, and an approximately 600-bp fragment was observed when the DNA extracted using the CLU method was used as a template. The CLU method is simple and cost effective, and it yields high-quality, unsheared, high-molecular-weight DNA, which is comparable to that obtained with a commercially available kit. The extracted DNA has potential for applications in critical molecular biology techniques.
    Matched MeSH terms: Gastrointestinal Microbiome
  15. Yusof N, Hamid N, Ma ZF, Lawenko RM, Wan Mohammad WMZ, Collins DA, et al.
    Gut Pathog, 2017;9:75.
    PMID: 29255490 DOI: 10.1186/s13099-017-0224-7
    Background: After an environmental disaster, the affected community is at increased risk for persistent abdominal pain but mechanisms are unclear. Therefore, our study aimed to determine association between abdominal pain and poor water, sanitation and hygiene (WaSH) practices, and if small intestinal bacterial overgrowth (SIBO) and/or gut dysbiosis explain IBS, impaired quality of life (QOL), anxiety and/or depression after a major flood.

    Results: New onset abdominal pain, IBS based on the Rome III criteria, WaSH practices, QOL, anxiety and/or depression, SIBO (hydrogen breath testing) and stools for metagenomic sequencing were assessed in flood victims. Of 211 participants, 37.9% (n = 80) had abdominal pain and 17% (n = 36) with IBS subtyped diarrhea and/or mixed type (n = 27 or 12.8%) being the most common. Poor WaSH practices and impaired quality of life during flood were significantly associated with IBS. Using linear discriminant analysis effect size method, gut dysbiosis was observed in those with anxiety (Bacteroidetes and Proteobacteria, effect size 4.8), abdominal pain (Fusobacteria, Staphylococcus, Megamonas and Plesiomonas, effect size 4.0) and IBS (Plesiomonas and Trabulsiella, effect size 3.0).

    Conclusion: Disturbed gut microbiota because of environmentally-derived organisms may explain persistent abdominal pain and IBS after a major environmental disaster in the presence of poor WaSH practices.

    Matched MeSH terms: Gastrointestinal Microbiome
  16. Li X, Tan CP, Liu YF, Xu YJ
    J Agric Food Chem, 2020 Dec 16;68(50):14728-14738.
    PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378
    The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
    Matched MeSH terms: Gastrointestinal Microbiome
  17. Che HL, Tan DM, Meganathan P, Gan YL, Abdul Razak G, Fu JY
    Int J Anal Chem, 2015;2015:357609.
    PMID: 26604927 DOI: 10.1155/2015/357609
    Quantification of tocotrienols in human plasma is critical when the attention towards tocotrienols on its distinctive properties is arising. We aim to develop a simple and practical normal-phase high performance liquid chromatography method to quantify the amount of four tocotrienol homologues in human plasma. Using both the external and internal standards, tocotrienol homologues were quantified via a normal-phase high performance liquid chromatography with fluorescence detector maintained at the excitation wavelength of 295 nm and the emission wavelength of 325 nm. The four tocotrienol homologues were well separated within 30 minutes. A large interindividual variation between subjects was observed as the absorption of tocotrienols is dependent on food matrix and gut lipolysis. The accuracies of lower and upper limit of quantification ranged between 92% and 109% for intraday assays and 90% and 112% for interday assays. This method was successfully applied to quantify the total amount of four tocotrienol homologues in human plasma.
    Matched MeSH terms: Gastrointestinal Microbiome
  18. Xiao SS, Mi JD, Mei L, Liang J, Feng KX, Wu YB, et al.
    Animals (Basel), 2021 Mar 16;11(3).
    PMID: 33809729 DOI: 10.3390/ani11030840
    The intestinal microbiota is increasingly recognized as an important component of host health, metabolism and immunity. Early gut colonizers are pivotal in the establishment of microbial community structures affecting the health and growth performance of chickens. White Lohmann layer is a common commercial breed. Therefore, this breed was selected to study the pattern of changes of microbiota with age. In this study, the duodenum, caecum and colorectum contents of white Lohmann layer chickens from same environment control farm were collected and analyzed using 16S rRNA sequencing to explore the spatial and temporal variations in intestinal microbiota. The results showed that the diversity of the microbial community structure in the duodenum, caecum and colorectum increased with age and tended to be stable when the layer chickens reached 50 days of age and the distinct succession patterns of the intestinal microbiota between the duodenum and large intestine (caecum and colorectum). On day 0, the diversity of microbes in the duodenum was higher than that in the caecum and colorectum, but the compositions of intestinal microbes were relatively similar, with facultative anaerobic Proteobacteria as the main microbes. However, the relative abundance of facultative anaerobic bacteria (Escherichia) gradually decreased and was replaced by anaerobic bacteria (Bacteroides and Ruminococcaceae). By day 50, the structure of intestinal microbes had gradually become stable, and Lactobacillus was the dominant bacteria in the duodenum (41.1%). The compositions of dominant microbes in the caecum and colorectum were more complex, but there were certain similarities. Bacteroides, Odoribacter and Clostridiales vadin BB60 group were dominant. The results of this study provide evidence that time and spatial factors are important factors affecting the intestinal microbiota composition. This study provides new knowledge of the intestinal microbiota colonization pattern of layer chickens in early life to improve the intestinal health of layer chickens.
    Matched MeSH terms: Gastrointestinal Microbiome
  19. Watanabe H, Ng CH, Limviphuvadh V, Suzuki S, Yamada T
    PeerJ, 2020;8:e9579.
    PMID: 32821539 DOI: 10.7717/peerj.9579
    Coffee beans derived from feces of the civet cat are used to brew coffee known as kopi luwak (the Indonesian words for coffee and palm civet, respectively), which is one of the most expensive coffees in the world owing to its limited supply and strong market demand. Recent metabolomics studies have revealed that kopi luwak metabolites differ from metabolites found in other coffee beans. To produce kopi luwak, coffee beans are first eaten by civet cats. It has been proposed that fermentation inside the civet cat digestive tract may contribute to the distinctively smooth flavor of kopi luwak, but the biological basis has not been determined. Therefore, we characterized the microbiome of civet cat feces using 16S rRNA gene sequences to determine the bacterial taxa that may influence fermentation processes related to kopi luwak. Moreover, we compared this fecal microbiome with that of 14 other animals, revealing that Gluconobacter is a genus that is, uniquely found in feces of the civet cat. We also found that Gluconobacter species have a large number of cell motility genes, which may encode flagellar proteins allowing colonization of the civet gut. In addition, genes encoding enzymes involved in the metabolism of hydrogen sulfide and sulfur-containing amino acids were over-represented in Gluconobacter. These genes may contribute to the fermentation of coffee beans in the digestive tract of civet cats.
    Matched MeSH terms: Gastrointestinal Microbiome
  20. Harnentis H, Marlida Y, Nur YS, Wizna W, Santi MA, Septiani N, et al.
    Vet World, 2020 Sep;13(9):1922-1927.
    PMID: 33132606 DOI: 10.14202/vetworld.2020.1922-1927
    Background and Aim: Probiotics play an important role in maintaining a healthy gut and consequently promote good health. This study aimed to find novel probiotic lactic acid bacteria (LAB) from indigenous fermented foods of West Sumatera, Indonesia.

    Materials and Methods: This study utilized 10 LAB previously isolated from fermented buffalo milk (dadih), fermented fish (budu), and fermented cassava (tape) which have the ability to produce gamma-aminobutyric acid. The study commenced with the screening of LAB for certain properties, such as resistance to acid and bile salts, adhesion to mucosal surface, and antagonism against enteric pathogens (Escherichia coli, Salmonella Enteritidis, and Staphylococcus aureus). The promising isolates were identified through biochemical and gram staining methods.

    Results: All isolates in this study were potential novel probiotics. They survived at a pH level of 2.5 for 3 h (55.27-98.18%) and 6 h (50.98-84.91%). Survival in bile at a concentration of 0.3% was 39.90-58.61% and the survival rate was 28.38-52.11% at a concentration of 0.5%. The inhibitory diameter ranged from 8.75 to 11.54 mm for E. coli, 7.02 to 13.42 mm for S. aureus, and 12.49 to 19.00 mm for S. Enteritidis. All the isolates (84.5-92%) exhibited the ability to adhere to mucosal surfaces. This study revealed that all the isolates were potential probiotics but N16 proved to be superior because it was viable at a pH level of 2 (84.91%) and it had a good survival rate in bile salts assay (55.07%). This isolate was identified as Lactobacillus spp., Gram-positive bacilli bacteria, and tested negative in both the catalase and oxidase tests.

    Conclusion: All the isolates in this study may be used as probiotics, with isolate N16 (Lactobacillus spp.) as the most promising novel probiotic for poultry applications based on its ability to inhibit pathogenic bacteria.

    Matched MeSH terms: Gastrointestinal Microbiome
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links