Displaying all 11 publications

Abstract:
Sort:
  1. Ahmad Bhawani S, Fong SS, Mohamad Ibrahim MN
    Int J Anal Chem, 2015;2015:170239.
    PMID: 26604926 DOI: 10.1155/2015/170239
    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine.
  2. Akkbik M, Assim ZB, Ahmad FB
    Int J Anal Chem, 2011;2011:858153.
    PMID: 21760792 DOI: 10.1155/2011/858153
    An HPLC method with ultraviolet-visible spectrophotometry detection has been optimized and validated for the simultaneous determination of phenolic compounds, such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) as antioxidants, and octyl methyl cinnamate (OMC) as UVB-filter in several personal care products. The dynamic range was between 1 to 250 mg/L with relative standard deviation less than 0.25% (n = 4). Limits of detection for BHA, BHT, and OMC were 0.196, 0.170, and 0.478 mg/L, respectively. While limits of quantification for BHA, BHT, and OMC were 0.593, 0.515, and 1.448 mg/L, respectively. The recovery for BHA, BHT, and OMC was ranged from 92.1-105.9%, 83.2-108.9%, and 87.3-103.7%, respectively. The concentration ranges of BHA, BHT, and OMC in 12 commercial personal care samples were 0.13-4.85, 0.16-2.30, and 0.12-65.5 mg/g, respectively. The concentrations of phenolic compounds in these personal care samples were below than maximum allowable concentration in personal care formulation, that is, 0.0004-10 mg/g, 0.002-5 mg/g, and up to 100 mg/g for BHA, BHT, and OMC, respectively.
  3. Lau EV, Gan S, Ng HK
    Int J Anal Chem, 2010;2010:398381.
    PMID: 20396670 DOI: 10.1155/2010/398381
    This paper aims to provide a review of the analytical extraction techniques for polycyclic aromatic hydrocarbons (PAHs) in soils. The extraction technologies described here include Soxhlet extraction, ultrasonic and mechanical agitation, accelerated solvent extraction, supercritical and subcritical fluid extraction, microwave-assisted extraction, solid phase extraction and microextraction, thermal desorption and flash pyrolysis, as well as fluidised-bed extraction. The influencing factors in the extraction of PAHs from soil such as temperature, type of solvent, soil moisture, and other soil characteristics are also discussed. The paper concludes with a review of the models used to describe the kinetics of PAH desorption from soils during solvent extraction.
  4. Zahari R, Halimoon N, Ahmad MF, Ling SK
    Int J Anal Chem, 2018;2018:8150610.
    PMID: 29692811 DOI: 10.1155/2018/8150610
    Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.
  5. Ridwan R, Abdul Razak HR, Adenan MI, Md Saad WM
    Int J Anal Chem, 2018;2018:4798530.
    PMID: 29853897 DOI: 10.1155/2018/4798530
    Watermelons (Citrullus lanatus) are known to have sufficient amino acid content. In this study, watermelons grown and consumed in Malaysia were investigated for their amino acid content, L-citrulline and L-arginine, by the isocratic RP-HPLC method. Flesh and rind watermelons were juiced, and freeze-dried samples were used for separation and quantification of L-citrulline and L-arginine. Three different mobile phases, 0.7% H3P04, 0.1% H3P04, and 0.7% H3P04 : ACN (90 : 10), were tested on two different columns using Zorbax Eclipse XDB-C18 and Gemini C18 with a flow rate of 0.5 mL/min and a detection wavelength at 195 nm. Efficient separation with reproducible resolution of L-citrulline and L-arginine was achieved using 0.1% H3P04 on the Gemini C18 column. The method was validated and good linearity of L-citrulline and L-arginine was obtained with R2 = 0.9956, y = 0.1664x + 2.4142 and R2 = 0.9912, y = 0.4100x + 3.4850, respectively. L-citrulline content showed the highest concentration in red watermelon of flesh and rind juice extract (43.81 mg/g and 45.02 mg/g), whereas L-arginine concentration was lower than L-citrulline, ranging from 3.39 to 11.14 mg/g. The isocratic RP-HPLC method with 0.1% H3P04 on the Gemini C18 column proved to be efficient for separation and quantification of L-citrulline and L-arginine in watermelons.
  6. Yusop Nurida M, Norfadilah D, Siti Aishah MR, Zhe Phak C, Saleh SM
    Int J Anal Chem, 2020;2020:9830685.
    PMID: 32089691 DOI: 10.1155/2020/9830685
    The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.
  7. Che HL, Tan DM, Meganathan P, Gan YL, Abdul Razak G, Fu JY
    Int J Anal Chem, 2015;2015:357609.
    PMID: 26604927 DOI: 10.1155/2015/357609
    Quantification of tocotrienols in human plasma is critical when the attention towards tocotrienols on its distinctive properties is arising. We aim to develop a simple and practical normal-phase high performance liquid chromatography method to quantify the amount of four tocotrienol homologues in human plasma. Using both the external and internal standards, tocotrienol homologues were quantified via a normal-phase high performance liquid chromatography with fluorescence detector maintained at the excitation wavelength of 295 nm and the emission wavelength of 325 nm. The four tocotrienol homologues were well separated within 30 minutes. A large interindividual variation between subjects was observed as the absorption of tocotrienols is dependent on food matrix and gut lipolysis. The accuracies of lower and upper limit of quantification ranged between 92% and 109% for intraday assays and 90% and 112% for interday assays. This method was successfully applied to quantify the total amount of four tocotrienol homologues in human plasma.
  8. Khamis AS, Chai LC
    Int J Anal Chem, 2021;2021:9937522.
    PMID: 34497647 DOI: 10.1155/2021/9937522
    Juniperus chinensis and Juniperus seravschanica are commonly used in the traditional folk medicine to treat microbial infection. In this study, the essential oils obtained from the leaves of J. chinensis growing in Malaysia and J. seravschanica growing in Oman were analysed by head space-solid phase microextraction-gas chromatography mass spectrometry (HS-SPME-GC-MS) and screened for antimicrobial activities against Escherichia coli (NCTC 10418), Pseudomonas aeruginosa (NCTC 10662), Bacillus subtilis ATCC6059, Micrococcus luteus (ATCC 9341), Staphylococcus aureus (NCTC 6571), and methicillin-resistant S. aureus (MRSA; ATCC 33591). To compare the antimicrobial activities of extracts using different extraction methods, methanol extraction was performed to obtain crude extracts from the leaves of J. chinensis and J. seravschanica for antimicrobial analysis. The HS-SPME-GS-MS analysis of the essential oils from the leaves of J. chinensis and J. seravschanica identified 37 and 36 components, respectively. Essential oils from these two species had distinctive chemical component profiles, with α-pinene (27.2%) as the major component of J. chinensis essential oil, while dl-limonene (45.2%) constitutes the major component of J. seravschanica essential oil. Essential oils of these two species shared only six similar terpenoids compounds: α-pinene, β-pinene, γ-elemene, sabinene, elemol, and 3-cyclohexen-1-ol. Overall, the essential oils showed antimicrobial activities against all the six bacterial strains tested, with the highest antagonistic activity against M. luteus and B. cereus; while, methanolic crude extracts showed the highest activities against S. aureus and MRSA strains. The methanolic crude extracts demonstrated significantly higher antibacterial activity against the Gram-positive bacteria (p < 0.005); while, the essential oils of Juniperus did not show significant differences between Gram-positive and Gram-negative bacteria. Future studies are needed to investigate the active compounds present in the essential oils and methanolic crude extracts that confer the selectivity in the antimicrobial activity.
  9. Samsuri AH, Ang MY, Ng SY
    Int J Anal Chem, 2021;2021:1941336.
    PMID: 34745265 DOI: 10.1155/2021/1941336
    This study aims to determine the residual hexane in four edible oils in Malaysia using a simple, rapid, and automated method in order to improve the efficiency and productivity of the analysis. Gas chromatography (GC/FID) equipped with a headspace autosampler (HS-20) was used to perform the analysis. Incubation time for each injection was successfully optimized from one hour to 30 minutes (50% reduction) compared to the official AOCS method Ca 3b-87. Out of the four tested edible oils, only the hexane residues detected in sunflower oil exceeded the maximum residue limit (MRL) set by the European Union regulation. Significant difference of the results obtained between large calibration range (0-938 mg kg-1) and small calibration range (0-68 mg kg-1) suggests that there is a need to use a lower standard calibration concentration to avoid misinterpretation of analysis results. Method validation applies to the technical hexane; 2-methylpentane, 3-methylpentane, cyclohexane, and methylcyclopentane, the signal-to-noise (S/N), as well as the limit of quantification (LoQ) values was found to be 218.20, 221.45, 746.37, 97.37 and 0.85, 0.84, 0.25, 1.93 mg kg-1, respectively. Good linearity, repeatability, and low carryover of this method have provided an alternative way to analyze the content of the residual hexane in edible oils in a more efficient manner. Current study might provide a fundamental reference for the improvement of the AOCS official Ca 3b-87 method for determination of hexane residues in fats and oils analysis in the future.
  10. Abdul Rahman S, Ahmad NI, Mohd Salim RJ, Muhamad NJ, Omar Hamdan AS, Leong YH
    Int J Anal Chem, 2024;2024:8581029.
    PMID: 38312506 DOI: 10.1155/2024/8581029
    It has been well-established that mycotoxins are poisonous chemical metabolites secreted by certain molds. Some of them significantly affect the health of humans and livestock. Increasing attention is now being paid to uncovering and identifying mycotoxins' presence in the building's environment. However, the main challenge remains in suitable and reliable analytical methods for their identification and detection in infected structures. GC-MS and LC-MS/MS techniques have been used extensively for mycotoxin analysis, and advancement in these techniques enabled a more comprehensive range of mycotoxins to be detected. As such, this study aimed to address a brief overview of various phenomena of existing sample collection, preparation, and analysis to detect mycotoxins in the building's environment. This scoping review includes articles from 2010 to 2020 available from PubMed, Scopus, Cochrane, Wiley, Google Scholar, and ScienceDirect. Duplicate articles were removed, and exclusion criteria were applied to eliminate unrelated studies, resulting in 14 eligible articles. The present study provides an overview of mycotoxin analysis by GC-MS and LC-MS/MS in buildings. Many techniques are available for analyzing and detecting multiple mycotoxins using these methods. Future efforts would focus on rapid assays and tools enabling measuring a broader range of mycotoxins in a single matrix and lower detection limits. In addition, it would assist future findings on new techniques and mycotoxins that existed in the building's environment.
  11. Gan KZ, Widodo RT, Chik Z, Teh LK, Rofiee MS, Mohamad Yusof MI
    Int J Anal Chem, 2021;2021:5590594.
    PMID: 33833807 DOI: 10.1155/2021/5590594
    A simple, rapid, and sensitive method of liquid chromatography-tandem mass spectrometry (LC/MS/MS) method was developed and validated for the determination of vardenafil in rabbit plasma. A simple protein precipitation method with ice-cold acetonitrile was used for plasma extraction. The mass transitions m/z 489⟶151 and m/z 390⟶169 were used to measure vardenafil and tadalafil (internal standard), respectively, with a total assay run time of 6 min. The limit of detection was 0.2 ng/mL. The assay was reproducible with intra-assay and interassay precision ranging 1.17%-9.17% and 1.31%-5.86%, respectively. There was also good intra-assay and interassay accuracy between 89.3%-105.3% and 94%-102% of the expected value, respectively. The linearity range was 0.5-60 ng/mL in rabbit plasma (r 2 ≥ 0.99). The measured AUC from 0 to 24 h (AUC0 - 24t ) for the test and reference formulations were 174.38 ± 95.91 and 176.45 ± 76.88, respectively. For the test, C max and T max were 75.36 ± 59.53 ng/mL and 1.42 ± 0.19 h, whereas, for the reference, these were 58.22 ± 36.11 ng/mL and 2.04 ± 0.33 h, respectively. The test formulation achieved a slightly lower AUC0 - 24t value (p > 0.05), higher C max values (p > 0.05), faster T max (p 
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links