Displaying publications 361 - 380 of 537 in total

Abstract:
Sort:
  1. Chowdhury SM, Omar AR, Aini I, Hair-Bejo M, Jamaluddin AA, Md-Zain BM, et al.
    Arch Virol, 2003 Dec;148(12):2437-48.
    PMID: 14648297
    Specific-pathogen-free (SPF) chickens inoculated with low passage Chicken anaemia virus (CAV), SMSC-1 and 3-1 isolates produced lesions suggestive of CAV infection. Repeated passages of the isolates in cell culture until passage 60 (P60) and passage 123 produced viruses that showed a significantly reduced level of pathogenicity in SPF chickens compared to the low passage isolates. Sequence comparison indicated that nucleotide changes in only the coding region of the P60 passage isolates were thought to contribute to virus attenuation. Phylogenetic analysis indicated that SMSC-1 and 3-1 were highly divergent, but their P60 passage derivatives shared significant homology to a Japanese isolate A2.
    Matched MeSH terms: Chickens
  2. Mohammed Jajere S, Hassan L, Zakaria Z, Abu J, Abdul Aziz S
    Antibiotics (Basel), 2020 Oct 15;9(10).
    PMID: 33076451 DOI: 10.3390/antibiotics9100701
    The emergence of multidrug resistance (MDR), including colistin resistance, among Enterobacteriaceae recovered from food animals poses a serious public health threat because of the potential transmission of these resistant variants to humans along the food chain. Village chickens or Ayam Kampung are free-range birds and are preferred by a growing number of consumers who consider these chickens to be organic and more wholesome. The current study investigates the antibiogram profiles of Salmonella isolates recovered from village chicken flocks in South-central Peninsular Malaysia. A total of 34 isolates belonging to eight serotypes isolated from village chickens were screened for resistance towards antimicrobials including colistin according to the WHO and OIE recommendations of critical antibiotics. S. Weltevreden accounted for 20.6% of total isolates, followed by serovars Typhimurium and Agona (17.6%). The majority of isolates (73.5%) demonstrated resistance to one or more antimicrobials. Eight isolates (23.5%) were resistant to ≥3 antimicrobial classes. Colistin resistance (minimum inhibitory concentrations: 4-16 mg/L) was detected among five isolates (14.7%), including S. Weltevreden, S. Albany, S. Typhimurium, and Salmonella spp. Univariable analysis of risk factors likely to influence the occurrence of MDR Salmonella revealed that the flock size, poultry production system, and use of antibiotics in the farm were not significantly (p > 0.05) associated with MDR Salmonella. The current study highlights that MDR Salmonella occur at a lower level in village chickens compared to that found in live commercial chickens. However, MDR remains a problem even among free-range chickens with minimal exposure to antibiotics.
    Matched MeSH terms: Chickens
  3. Ugwu IC, Lee-Ching L, Ugwu CC, Okoye JOA, Chah KF
    Iran J Vet Res, 2020;21(3):180-187.
    PMID: 33178295
    Background: Avian pathogenic Escherichia coli (APEC) strains have been associated with various disease conditions in avian species due to virulence attributes associated with the organism.

    Aims: This study was carried out to determine the in vitro pathogenic characteristics and virulence encoding genes found in E. coli strains associated with colibacillosis in chickens.

    Methods: Fifty-two stock cultures of E. coli strains isolated from chickens diagnosed of colibacillosis were tested for their ability to produce haemolysis on blood agar and take up Congo red dye. Molecular characterization was carried out by polymerase chain reaction (PCR) amplification of virulence encoding genes associated with APEC.

    Results: Eleven (22%) and 41 (71%) were positive for haemolysis on 5% sheep red blood agar and Congo red agar, respectively. Nine virulence-associated genes were detected as follows: FimH (96%), csgA (52%), iss (48%), iut (33%), tsh (21%), cva (15%), kpsII (10%), pap (2%), and felA (2%).

    Conclusion: The APEC strains exhibited virulence properties and harbored virulence encoding genes which could be a threat to the poultry population and public health. The putative virulence genes were diverse and different in almost all isolate implying that pathogenesis was multi-factorial and the infection was multi-faceted which could be a source of concern in the detection and control of APEC infections.

    Matched MeSH terms: Chickens
  4. Tan TS, Sharifah Syed Hassan, Yap WB
    Sains Malaysiana, 2016;45:787-793.
    The use of cell lines such as Madin-Darby Canine Kidney (MDCK) and African Green Monkey Kidney (Vero) cells in
    influenza vaccine production is much advocated presently as a safer alternative to chicken embryonated eggs. It is
    thus essential to understand the influenza virus replication patterns in these cell lines prior to utilizing them in vaccine
    production. The infectivity of avian influenza A virus (A/Chicken/Malaysia/5858/2004) H5N1 in MDCK and Vero cell
    lines was first assessed by comparing the cytopathic effect (CPE) caused by the virus infection. The viral loads in both
    of the infected media and cells were also compared. The results showed that both of the MDCK and Vero cells began to
    exhibit significant CPE (p<0.05) after 48 h post-infection (h p.i). The MDCK cell line was more susceptible to the virus
    infection compared to Vero cell line throughout the incubation period. A higher viral load was also detected in the host
    cells compared to their respective culturing media. Interestingly, after reaching its maximum titer at 48 h p.i, the viral
    load in MDCK cells declined meanwhile the viral load in Vero cells increased gradually and peaked at 120 h p.i. Overall,
    both cell lines support efficient H5N1 virus replication. While the peak viral loads measured in the two cell lines did
    not differ much, a more rapid replication was observed in the infected MDCK samples. The finding showed that MDCK
    cell line might serve as a more time-saving and cost-effective cell culture-based system compared to Vero cell line for
    influenza vaccine production.
    Matched MeSH terms: Chickens
  5. An JU, Ho H, Kim J, Kim WH, Kim J, Lee S, et al.
    Front Microbiol, 2018;9:3136.
    PMID: 30619204 DOI: 10.3389/fmicb.2018.03136
    Campylobacter jejuni is a major foodborne pathogen that is increasingly found worldwide and that is transmitted to humans through meat or dairy products. A detailed understanding of the prevalence and characteristics of C. jejuni in dairy cattle farms, which are likely to become sources of contamination, is imperative and is currently lacking. In this study, a total of 295 dairy cattle farm samples from 15 farms (24 visits) in Korea were collected. C. jejuni prevalence at the farm level was 60% (9/15) and at the animal level was 23.8% (68/266). Using the multivariable generalized estimating equation (GEE) model based on farm-environmental factors, we estimated that a high density of cattle and average environmental temperature (7 days prior to sampling) below 24°C affects the presence and survival of C. jejuni in the farm environment. Cattle isolates, together with C. jejuni from other sources (chicken and human), were genetically characterized based on analysis of 10 virulence and survival genes. A total of 19 virulence profile types were identified, with type 01 carrying eight genes (all except hcp and virB11) being the most prevalent. The prevalence of virB11 and hcp was significantly higher in isolates from cattle than in those from other sources (p < 0.05). Multilocus sequence typing (MLST) of C. jejuni isolates from three different sources mainly clustered in the CC-21 and CC-48. Within the CC-21 and CC-48 clusters, cattle isolates shared an indistinguishable pattern with human isolates according to pulsed-field gel electrophoresis (PFGE) and flaA-restriction fragment length polymorphism (RFLP) typing. This suggests that CC-21 and CC-48 C. jejuni from dairy cattle are genetically related to clinical campylobacteriosis isolates. In conclusion, the farm environment influences the presence and survival of C. jejuni, which may play an important role in cycles of cattle re-infection, and dairy cattle represent potential reservoirs of human campylobacteriosis. Thus, environmental management practices could be implemented on cattle farms to reduce the shedding of C. jejuni from cattle, subsequently reducing the potential risk of the spread of cattle-derived C. jejuni to humans through the food chain.
    Matched MeSH terms: Chickens
  6. Mohammed JN, Wan Dagang WRZ
    World J Microbiol Biotechnol, 2019 Jul 22;35(8):121.
    PMID: 31332590 DOI: 10.1007/s11274-019-2696-8
    The economics of bioflocculant production is coupled with the use of a low-cost substrate at appropriate culture conditions. The use of a waste substrate for this purpose offers an additional treatment measure to mitigate environmental pollution. We investigated the growth of Aspergillus flavus and its bioflocculant yield using chicken viscera hydrolysate as the sole media. The effects of culture conditions including time, pH, shaker speed, temperature and inoculum size on bioflocculant production were all investigated and optimised through response surface method based on the central component design (CCD) package of Design Expert. Next, the purified bioflocculant was physically and chemically characterised. Under optimised culture conditions (incubation time 72 h, pH 7, shaker speed 150 rpm, temperature 35 °C and inoculum 4%), 6.75 g/L yield of crude bioflocculant was recorded. The bioflocculant activity was mostly distributed in the cell-free supernatant with optimum efficiency of 91.8% at a dose of 4 mL/100 mL Kaolin suspension. The purified bioflocculant was a glycoprotein consisting of 23.46% protein and 74.5% sugar, including 46% neutral sugar and 2.01% uronic acid. The X-ray photoelectron spectroscopy fundamental analysis of the purified bioflocculant indicated that the mass proportion of C, O and N, were 63.46%, 27.87% and 8.86%, respectively. The bioflocculant is mainly composed of carbonyl, amino, hydroxyl, and amide functional groups. This study for the first time indicates a high potential of bioflocculant yield from chicken viscera at the appropriate culture conditions.
    Matched MeSH terms: Chickens
  7. Ashari KS, Roslan NS, Omar AR, Bejo MH, Ideris A, Mat Isa N
    PeerJ, 2019;7:e6948.
    PMID: 31293824 DOI: 10.7717/peerj.6948
    Salmonella enterica subsp. enterica serovar Stanley (S. Stanley) is a pathogen that contaminates food, and is related to Salmonella outbreaks in a variety of hosts such as humans and farm animals through products like dairy items and vegetables. Despite the fact that several vaccines of Salmonella strains had been constructed, none of them were developed according to serovar Stanley up to this day. This study presents results of genome sequencing and analysis on our S. Stanley UPM 517 strain taken from fecal swabs of 21-day-old healthy commercial chickens in Perak, Malaysia and used Salmonella enterica subsp. enterica serovar Typhimurium LT2 (S. Typhimurium LT2) as a reference to be compared with. First, sequencing and assembling of the Salmonella Stanley UPM 517 genome into a contiguous form were done. The work was then continued with scaffolding and gap filling. Annotation and alignment of the draft genome was performed with S. Typhimurium LT2. The other elements of virulence estimated in this study included Salmonella pathogenicity islands, resistance genes, prophages, virulence factors, plasmid regions, restriction-modification sites and the CRISPR-Cas system. The S. Stanley UPM 517 draft genome had a length of 4,736,817 bp with 4,730 coding sequence and 58 RNAs. It was discovered via genomic analysis on this strain that there were antimicrobial resistance properties toward a wide variety of antibiotics. Tcf and ste, the two fimbrial virulence clusters related with human and broiler intestinal colonizations which were not found in S. Typhimurium LT2, were atypically discovered in the S. Stanley UPM 517 genome. These clusters are involved in the intestinal colonization of human and broilers, respectively. There were seven Salmonella pathogenicity islands (SPIs) within the draft genome, which contained the virulence factors associated with Salmonella infection (except SPI-14). Five intact prophage regions, mostly comprising of the protein encoding Gifsy-1, Fels-1, RE-2010 and SEN34 prophages, were also encoded in the draft genome. Also identified were Type I-III restriction-modification sites and the CRISPR-Cas system of the Type I-E subtype. As this strain exhibited resistance toward numerous antibiotics, we distinguished several genes that had the potential for removal in the construction of a possible vaccine candidate to restrain and lessen the pervasiveness of salmonellosis and to function as an alternative to antibiotics.
    Matched MeSH terms: Chickens
  8. Jajere SM, Hassan L, Abdul Aziz S, Zakaria Z, Abu J, Nordin F, et al.
    Poult Sci, 2019 Nov 01;98(11):5961-5970.
    PMID: 31392329 DOI: 10.3382/ps/pez392
    Village chicken or Ayam Kampung, common to Southeast Asian countries, has always been regarded as superior in comparison to commercial broiler chicken in terms of wholesomeness and health benefits. The current study investigates the prevalence and risk factors of Salmonella among village chicken flocks from the central and southern states of Peninsular Malaysia. A total of 35 village flocks were sampled from Selangor (n = 19), Melaka (n = 10), Johor (n = 4), and Negeri Sembilan (n = 2). In total, 1,042 samples were collected; these included cloacal swabs (n = 675), eggs (n = 62), pooled drinking water (n = 175), pooled feeds (n = 70), and pooled flies (n = 60). Isolation of Salmonella from cloacal swabs, poultry drinking water, and feeds was carried out according to the protocols and recommendations of the World Organization for Animal Health (OIE) terrestrial manual. The prevalence of Salmonella at an individual bird-level was 2.5% (17/675, 95% CI: 1.6 to 4.0). All eggs screened were negative; in the case of environmental samples, however, Salmonella was detected in 5.14% (9/175), 7.14% (5/70), and 5.0% (3/60) for water, feed, and flies, respectively. A total of 34 isolates and 8 Salmonella serotypes were identified. Weltevreden (20.6%) was the most common, followed by Typhimurium and Agona (17.6%), Albany and Enteritidis (8.8%), Molade (5.9%), Corvallis and Schleissheim (2.9%), and others grouped as Salmonella spp. (11.8%). Multivariable logistic regression models revealed that Salmonella positivity among flocks could be strongly predicted by storage of feeds (uncovered feeds; OR = 10.38; 95% CI: 1.25 to 86.39; p = 0.030) and uncovered water tanks (uncovered tank; OR = 6.43; 95% CI: 1.02 to 40.60; p = 0.048). The presence of Salmonella in village chickens in the study area was lower than that of commercial chickens in Malaysia.
    Matched MeSH terms: Chickens
  9. Hussein EA, Hair-Bejo M, Adamu L, Omar AR, Arshad SS, Awad EA, et al.
    Vet Med Int, 2018;2018:9296520.
    PMID: 30631413 DOI: 10.1155/2018/9296520
    Newcastle disease virus strains are velogenic, mesogenic, and lentogenic. This study aims to design a scoring system for lesions induced by different strains of Newcastle disease virus in chicken. Three experiments were conducted. In experiments 1 and 2, chickens were divided into infected and control groups. Infected groups of experiments 1 and 2 consisted of 6 and 24 specific pathogen-free (SPF) chickens, respectively. Control groups in experiments 1 and 2 consisted of 6 and 15 SPF chickens, respectively. In infected groups, infection was induced by intranasal administration of 105 50% EID50/0.1 mL of velogenic Newcastle disease virus strain (vNDV). Infected chickens in experiment 1 were euthanised by cervical dislocation on days 3, 6, and 7 postinoculation (pi). Infected chickens in experiment 2 were euthanised at hours (hrs) 2, 4, 6, 12 and days 1, 2, 4, and 6 pi. Chickens of the control group in experiment 1 were euthanised on days 3 and 7 pi, whereas control group chickens in experiment 2 were euthanised on days 0, 1, 2, 4, and 6 pi. Then in experiment 3, 15 SPF chickens were divided into three groups; in the first group, 5 SPF chickens were infected with vNDV, in the second group, 5 SPF chickens were infected with lentogenic NDV (lNDV) (103.0 EID50/0.1 mL), and the third group was kept without infection as a control group. Chickens were euthanised on day 5 pi. In all previous experiments, tissues of brain, trachea, lung, caecal tonsil, liver, kidney, spleen, heart, proventriculus, intestine, and thymus were collected, fixed in 10% buffered formalin, embedded in paraffin, and sectioned. HS staining was applied. Tissues were examined under light microscope and changes were recorded. A scoring system was designed for lesions induced by different strains of NDV and, accordingly, lesions were scored. The scoring system was found helpful in the evaluation of disease severity.
    Matched MeSH terms: Chickens
  10. Nurjuliana M, Che Man YB, Mat Hashim D, Mohamed AK
    Meat Sci, 2011 Aug;88(4):638-44.
    PMID: 21420795 DOI: 10.1016/j.meatsci.2011.02.022
    The volatile compounds of pork, other meats and meat products were studied using an electronic nose and gas chromatography mass spectrometer with headspace analyzer (GCMS-HS) for halal verification. The zNose™ was successfully employed for identification and differentiation of pork and pork sausages from beef, mutton and chicken meats and sausages which were achieved using a visual odor pattern called VaporPrint™, derived from the frequency of the surface acoustic wave (SAW) detector of the electronic nose. GCMS-HS was employed to separate and analyze the headspace gasses from samples into peaks corresponding to individual compounds for the purpose of identification. Principal component analysis (PCA) was applied for data interpretation. Analysis by PCA was able to cluster and discriminate pork from other types of meats and sausages. It was shown that PCA could provide a good separation of the samples with 67% of the total variance accounted by PC1.
    Matched MeSH terms: Chickens
  11. Rahman MM, Ali ME, Hamid SB, Mustafa S, Hashim U, Hanapi UK
    Meat Sci, 2014 Aug;97(4):404-9.
    PMID: 24769096 DOI: 10.1016/j.meatsci.2014.03.011
    A polymerase chain reaction (PCR) assay for the assessment of dog meat adulteration in meatballs was developed. The assay selectively amplified a 100-bp region of canine mitochondrial cytochrome b gene from pure, raw, processed and mixed backgrounds. The specificity of the assay was tested against 11 animals and 3 plants species, commonly available for meatball formulation. The stability of the assay was proven under extensively autoclaving conditions that breakdown target DNA. A blind test from ready to eat chicken and beef meatballs showed that the assay can repeatedly detect 0.2% canine meat tissues under complex matrices using 0.04 ng of dog DNA extracted from differentially treated meatballs. The simplicity, stability and sensitivity of the assay suggested that it could be used in halal food industry for the authentication of canine derivatives in processed foods.
    Matched MeSH terms: Chickens
  12. Murugaiah C, Noor ZM, Mastakim M, Bilung LM, Selamat J, Radu S
    Meat Sci, 2009 Sep;83(1):57-61.
    PMID: 20416658 DOI: 10.1016/j.meatsci.2009.03.015
    A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.
    Matched MeSH terms: Chickens
  13. Pakalapati H, Show PL, Chang JH, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Dec 15;165(Pt B):2494-2507.
    PMID: 33736272 DOI: 10.1016/j.ijbiomac.2020.10.099
    In this research, a protein nanofiber membrane (P-COOH-CEW) was developed to treat the dye waste. Initially, polyacrylonitrile nanofiber membrane (PAN) was prepared by electrospinning, followed by heat treatment, alkaline treatment, and neutralization to obtain weak cation exchange nanofiber membrane (P-COOH). The P-COOH membrane was chemically coated with chicken egg white (CEW) proteins to obtain a 3D structure of complex protein nanofiber membrane (P-COOH-CEW). The composite prepared was characterized with Fourier Transform Infrared analysis (FTIR), Scanning Electron Microscopy (SEM), and thermogravimetric analysis (TGA). Further, the composite was evaluated by investigating the removal of Toluidine Blue O (TBO) from aqueous solutions in batch conditions. Different operating parameters - coupling of CEW, shaking rate, initial pH, contact time, temperature, and dye concentration were studied. From the results, maximum removal capacity and equilibrium association constant was determined to be 546.24 mg/g and 10.18 mg/mg, respectively at pH 10 and 298 K. The experimental data were well fitted to pseudo-second order model. Furthermore, desorption studies revealed that the adsorbed TBO can be completely eluted by using 50% ethanol or 50% glycerol in 1 M NaCl solution. Additionally, the reuse of P-COOH-CEW membrane reported to have 97.32% of removal efficiency after five consecutive adsorption/desorption cycles.
    Matched MeSH terms: Chickens
  14. Show PL, Ooi CW, Lee XJ, Yang CL, Liu BL, Chang YK
    Int J Biol Macromol, 2020 Nov 01;162:1711-1724.
    PMID: 32805284 DOI: 10.1016/j.ijbiomac.2020.08.065
    Adsorption of lysozyme on the dye-affinity nanofiber membranes was investigated in batch and dynamic modes. The membrane matrix was made of electrospun polyacrylonitrile nanofibers that were grafted with ethylene diamine (EDA) and/or chitosan (CS) for the coupling of Reactive Blue 49 dye. The physicochemical properties of these dye-immobilized nanofiber membranes (P-EDA-Dye and P-CS-Dye) were characterized microscopically, spectroscopically and thermogravimetrically. The capacities of lysozyme adsorption by the dye-affinity nanofiber membranes were evaluated under various conditions, namely pH, dye immobilized density, and loading flow rate. The adsorption of lysozyme to the dye-affinity nanofiber membranes was well fitted by Langmuir isotherm and pseudo-second kinetic models. P-CS-Dye nanofiber membrane had a better performance in the dynamic adsorption of lysozyme from complex chicken egg white solution. It was observed that after five cycles of adsorption-desorption, the dye-affinity nanofiber membrane did not show a significant loss in its capacity for lysozyme adsorption. The robustness as well as high dynamic adsorption capability of P-CS-Dye nanofiber membrane are promising for the efficient recovery of lysozyme from complex feedstock via nanofiber membrane chromatography.
    Matched MeSH terms: Chickens
  15. Ye M, Lin L, Yang W, Gopinath SCB
    PMID: 33769582 DOI: 10.1002/bab.2152
    This study demonstrated the terminated sialo-sugar chains (Neu5Acα2,6Gal and Neu5Acα2,3Gal) mediated specificity enhancement of influenza virus and chicken red blood cell (RBC) by hemagglutination assay. These glycan chains were immobilized on the gold nanoparticle (GNP) to withhold the higher numbers. With the preliminary optimization, a clear button formation with 0.5% RBC was visualized. On the other hand, intact B/Tokio/53/99 with 750 nM hemagglutinin (HA) displayed a nice hemagglutination. The interference on the specificity of RBC and influenza virus was observed by anti-influenza aptamer at the concentration 31 nM, however, there is no hemagglutination prevention was noticed in the presence of complementary aptamer sequences. Spiking GNP conjugated Neu5Acα2,6Gal or Neu5Acα2,3Gal or a mixture of these two to the reaction promoted the hemagglutination to 63 folds higher with 12 nM virus, whereas under the same condition the heat inactivated viruses were lost the hemagglutination. Neuraminidases from Clostridium perfringens and Arthrobacter ureafaciens at 0.0025 neuraminidase units are able to abolish the hemagglutination. Other enzymes, Glycopeptidase F (Elizabethkingia meningoseptica) and Endoglycosidase H (Streptomyces plicatus) did not show the changes with agglutination. Obviously, sialyl-Gal-terminated glycan conjugated GNP amendment has enhanced the specificity of erythrocyte-influenza virus and able to be controlled by aptamer or neuraminidases. This article is protected by copyright. All rights reserved.
    Matched MeSH terms: Chickens
  16. Nordin N, Sani NIM, Kadir AA, Shaari R, Mohamed M, Reduan MFH, et al.
    J Adv Vet Anim Res, 2021 Mar;8(1):101-104.
    PMID: 33860019 DOI: 10.5455/javar.2021.h491
    Objective: In this case report, we have investigated the infectious bronchitis (IB) virus (IBV) outbreak with the co-infection of Escherichia coli in 28-33-day-old broiler chickens in Malaysia.

    Materials and Methods: A farmer complained that Cobb 500 chickens, raised in the open house, were having bloody diarrhea, open mouth breathing, non-uniform growth, and ruffled feathers. The mortality was about 100 birds (from about 7000 birds) per day. The sick birds were isolated and subjected to physical examination, postmortem, and histopathological analyses. Gross lesions were observed and recorded. The lung samples have proceeded with histopathological evaluations. The lungs, kidneys, trachea, air sac, and heart samples were collected to isolate bacteria and fungi through a series of conventional cultural methods, followed by molecular confirmation of the IBV.

    Results: Postmortem examination revealed air sacculitis, hemorrhagic tracheitis, pulmonary congestion, fibrin deposition in the liver and air sac, hemorrhagic enteritis, and renomegaly. The bacterial culture and biochemical tests revealed E. coli in the lungs, trachea, liver, intestine, and kidney samples. However, no fungus could be isolated from those samples. Histological evaluation of lung samples demonstrated infiltration of inflammatory cells in the pulmonary tissues. Apart from this, reverse transcription-polymerase chain reaction confirmed the presence of avian coronavirus responsible for infectious bronchitis (IB).

    Conclusion: The chickens were diagnosed with IB concurrent with E.coli. The chickens exhibited typical nephropathogenic strain of IBV infection, causing high mortality.

    Matched MeSH terms: Chickens
  17. Haulisah NA, Hassan L, Bejo SK, Jajere SM, Ahmad NI
    Front Vet Sci, 2021;8:652351.
    PMID: 33869326 DOI: 10.3389/fvets.2021.652351
    Overuse of antimicrobials in livestock health and production beyond therapeutic needs has been highlighted in recent years as one of the major risk factors for the acceleration of antimicrobial resistance (AMR) of bacteria in both humans and animals. While there is an abundance of reports on AMR in clinical isolates from humans, information regarding the patterns of resistance in clinical isolates from animals is scarce. Hence, a situational analysis of AMR based on clinical isolates from a veterinary diagnostic laboratory was performed to examine the extent and patterns of resistance demonstrated by isolates from diseased food animals. Between 2015 and 2017, 241 cases of diseased livestock were received. Clinical specimens from ruminants (cattle, goats and sheep), and non-ruminants (pigs and chicken) were received for culture and sensitivity testing. A total of 701 isolates were recovered from these specimens. From ruminants, Escherichia coli (n = 77, 19.3%) predominated, followed by Staphylococcus aureus (n = 73, 18.3%). Antibiotic sensitivity testing (AST) revealed that E. coli resistance was highest for penicillin, streptomycin, and neomycin (77-93%). In addition, S. aureus was highly resistant to neomycin, followed by streptomycin and ampicillin (68-82%). More than 67% of E. coli isolates were multi-drug resistant (MDR) and only 2.6% were susceptible to all the tested antibiotics. Similarly, 65.6% of S. aureus isolates were MDR and only 5.5% were susceptible to all tested antibiotics. From non-ruminants, a total of 301 isolates were recovered. Escherichia coli (n = 108, 35.9%) and Staphylococcus spp. (n = 27, 9%) were the most frequent isolates obtained. For E. coli, the highest resistance was against amoxicillin, erythromycin, tetracycline, and neomycin (95-100%). Staphylococcus spp. had a high level of resistance to streptomycin, trimethoprim/sulfamethoxazole, tetracycline and gentamicin (80-100%). The MDR levels of E. coli and Staphylococcus spp. isolates from non-ruminants were 72.2 and 74.1%, respectively. Significantly higher resistance level were observed among isolates from non-ruminants compared to ruminants for tetracycline, amoxicillin, enrofloxacin, and trimethoprim/sulfamethoxazole.
    Matched MeSH terms: Chickens
  18. Agusta, Istiqomah, Jacinta Santhanam, Yap, Wei Boon
    MyJurnal
    In the search for universal vaccine candidates for the prevention of avian influenza, the non-structural (NS)-1 protein of avian influenza virus (AIV) H5N1 has shown promising potential for its ability to effectively stimulate the host immunity. This study was aimed to produce a bacterial expression plasmid using pRSET B vector to harbour the NS1 gene of AIV H5N1 (A/Chicken/Malaysia/5858/2004 (H5N1)) for protein expression in Escherichia coli (E. coli). The NS1 gene (687 bp) was initially amplified by polymerase chain reaction (PCR) and then cloned into a pGEM-T Easy TA vector. The NS1 gene was released from pGEM-T-NS1 using EcoRI and XhoI restriction enzymes (RE). The pRSET B vector was also linearized using the same RE. The digested NS1 gene and linearized pRSET B were ligated using T4 DNA ligase to form the expression plasmid, pRSET B-NS1. The NS1 gene sequence in pRSET B-NS1 was confirmed by DNA sequencing. To prepare recombinant bacterial cells for protein expression in the future, pRSET B-NS1 was transformed into E. coli strain BL21 (DE3) by heat-shock. Colonies bearing the recombinant plasmid were screened using PCR. The DNA sequencing analysis revealed that the NS1 gene sequence was 97% homologous to that of AIV H5N1 A/Chicken/Malaysia/5858/2004 (H5N1). These results indicated that the NS1 gene of influenza A/Chicken/Malaysia/5858/2004 (H5N1) was successfully amplified and cloned into a pRSET B vector. Bacterial colonies carrying pRSET B-NS1 can be used for the synthesis of NS1-based influenza vaccine in the future and thereby aid in the prevention of avian influenza.
    Matched MeSH terms: Chickens
  19. Wan-Mohtar WAAQI, Halim-Lim SA, Kamarudin NZ, Rukayadi Y, Abd Rahim MH, Jamaludin AA, et al.
    J Food Sci, 2020 Oct;85(10):3124-3133.
    PMID: 32860235 DOI: 10.1111/1750-3841.15402
    In a commercial oyster mushroom farm, from 300 g of the total harvest, only the cap and stem of the fruiting body parts are harvested (200 g) while the unused lower section called fruiting-body-base (FBB) is discarded (50 g). A new antioxidative FBB flour (FBBF) conversion to mixed-ratio chicken patty was recently developed which converts 16.67% of FBB into an edible flour. At the initial stage, pretreatments of FBBF were optimized at particle size (106 µm) and citric acid concentration (0.5 g/100 mL) to improve flour antioxidant responses. Such pretreatments boosted total phenolic content (2.31 ± 0.53 mg GAE/g) and DPPH (51.53 ± 1.51%) of pretreated FBBF. Mixed-ratio chicken patty containing FBBF (10%, 20%, 30%) significantly (P
    Matched MeSH terms: Chickens
  20. Tang JY, Nishibuchi M, Nakaguchi Y, Ghazali FM, Saleha AA, Son R
    Lett Appl Microbiol, 2011 Jun;52(6):581-8.
    PMID: 21375548 DOI: 10.1111/j.1472-765X.2011.03039.x
    We quantified Campylobacter jejuni transferred from naturally contaminated raw chicken fillets and skins to similar cooked chicken parts via standard rubberwood (RW) and polyethylene cutting boards (PE).
    Matched MeSH terms: Chickens
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links