Displaying publications 201 - 220 of 451 in total

Abstract:
Sort:
  1. Joseph N, Clayton JB, Hoops SL, Linhardt CA, Mohd Hashim A, Mohd Yusof BN, et al.
    Evol Bioinform Online, 2020;16:1176934320965943.
    PMID: 33281440 DOI: 10.1177/1176934320965943
    Childhood obesity is a serious public health problem worldwide. Perturbations in the gut microbiota composition have been associated with the development of obesity in both children and adults. Probiotics, on the other hand, are proven to restore the composition of the gut microbiome which helps reduce the development of obesity. However, data on the effect of probiotics on gut microbiota and its association with childhood obesity is limited. This study aims to determine the effect of probiotics supplement intervention on gut microbiota profiles in obese and normal-weight children. A total of 37 children, 17 normal weight, and 20 overweight school children from a government school in Selangor were selected to participate in this study. Participants were further divided into intervention and control groups. The intervention groups received daily probiotic drinks while the control groups continued eating their typical diet. Fecal samples were collected from the participants for DNA extraction. The hypervariable V3 and V4 regions of 16S rRNA gene were amplified and sequenced using the Illumina MiSeq platform. No significant differences in alpha diversity were observed between normal weight and obese children in terms of the Shannon Index for evenness or species richness. However, a higher intervention effect on alpha diversity was observed among normal-weight participants compared to obese. The participants' microbiome was found to fluctuate throughout the study. Analysis of the taxa at species level showed an increase in Bacteroides ovatus among the normal weight cohort. Genus-level comparison revealed a rise in genus Lachnospira and Ruminococcus in the overweight participants after intervention, compared to the normal-weight participants. The probiotics intervention causes an alteration in gut microbiota composition in both normal and overweight children. Though the association could not be defined statistically, this study has provided an improved understanding of the intervention effect of probiotics on gut microbiome dysbiosis in an underrepresented population.
    Matched MeSH terms: RNA, Ribosomal, 16S
  2. Zhou JN, Liu SY, Chen YF, Liao LS
    Plant Dis, 2015 Mar;99(3):416.
    PMID: 30699721 DOI: 10.1094/PDIS-10-14-1025-PDN
    Clausena lansium, also known as wampee (Clausena wampi), is a plant species native to China, Vietnam, the Philippines, Malaysia, and Indonesia, where it is widely cultivated, and also grown in India, Sri Lanka, Queensland, Florida, and Hawaii, but less frequently (3). The fruit can be consumed fresh or made into juice, jam, or succade. In summer to fall 2014, a soft rot disease was found in a wampee planting region in Yunan County, Guangdong Province, China. On Sept. 18, we collected diseased samples from a wampee orchard with about 20% disease incidence. The infected fruit initially showed pinpoint spots on the peel, water-soaked lesions, and light to dark brown discoloration. Spots expanded in 2 days, and tissues collapsed after 5 days. Severely affected fruit showed cracking or nonodorous decay. Five diseased samples were collected, and causal agents were isolated from symptomatic tissues 1 cm under the peel after surface sterilization in 0.3% NaOCl for 10 min and rinsing in sterile water three times. Tissues were placed on a Luria Bertani (LB) plate for culture. Ten representative isolates were selected for further characterization. No colony was isolated from healthy tissues. Colonies were round, smooth, with irregular edges, and produced a yellow pigment in culture. Biolog identification (Version 4.20.05) showed that all strains were gram negative, negative for indole production, and utilized glucose, maltose, trehalose, sucrose, D-lactose, and pectin but not sorbitol or gelatin. The isolates were identified as Pantoea agglomerans (SIM 0.69). Multilocus sequence analysis (MLSA) was conducted for rapid classification of the strains. Sequences of atpD, gyrB, infB, and rpoB were amplified using corresponding primers (2). All sequences of the 10 isolates were identical in each gene. BLASTn was performed, and maximum likelihood trees based on the concatenated nucleotide sequences of the four genes were constructed using MEGA6. Bootstrap values after 1,000 replicates were expressed as percentages. Results showed that the tested strain named CL1 was most homologous to P. anthophila, with 98% identity for atpD (KM521543), 100% for gyrB (KM521544), infB (KM521545), and rpoB (KM521546). The 16S rRNA sequence (KM521542) amplified by primers 27f and 1492r shared 99% identity with that of P. anthophila M19_2C (JN644500). P. anthophila was previously reclassified from P. agglomerans (3); therefore, we suggest naming this wampee pathogen P. anthophila. Subsequently, 10 wampee fruits were injected with 20 μl of bacterial suspension (1 × 108 CFU/ml) of strains CL1 and CL2, respectively, and another 10 were injected with 20 μl of LB medium as controls, all kept at 28°C for 4 days. Symptoms similar to those of natural infections were observed on inoculated fruits but not on the negative controls. Bacteria were isolated from diseased tissues and further identified as P. anthophila by gyrB sequencing. P. anthophila was reported to naturally infect balsam and marigold (1,2). To our knowledge, this is the first report of P. anthophila naturally causing soft rot disease and cracking on C. lansium (wampee). References: (1) C. Brady et al. Syst. Appl. Microbiol. 31:447, 2008. (2) C. Brady et al. Int. J. Syst. Evol. Microbiol. 59:2339, 2009. (3) J. Morton. Fruits of Warm Climates. Echo Point Books & Media, Miami, FL, 1987.
    Matched MeSH terms: RNA, Ribosomal, 16S
  3. Golkhandan E, Kamaruzaman S, Sariah M, Abidin MAZ, Nazerian E, Yassoralipour A
    Plant Dis, 2013 May;97(5):685.
    PMID: 30722205 DOI: 10.1094/PDIS-08-12-0759-PDN
    In August 2011, sweet potato (Ipomoea batatas), tomato (Solanum lycopersicum), and eggplant (S. melongena) crops from major growing areas of the Cameron highlands and Johor state in Malaysia were affected by a soft rot disease. Disease incidence exceeded 80, 75, and 65% in severely infected fields and greenhouses of sweet potato, tomato, and eggplant, respectively. The disease was characterized by dark and small water-soaked lesions or soft rot symptoms on sweet potato tubers, tomato stems, and eggplant fruits. In addition, extensive discoloration of vascular tissues, stem hollowness, and water-soaked, soft, dark green lesions that turned brown with age were observed on the stem of tomato and eggplant. A survey was performed in these growing areas and 22 isolates of the pathogen were obtained from sweet potato (12 isolates), tomato (6 isolates), and eggplant (4 isolates) on nutrient agar (NA) and eosin methylene blue (EMB) (4). The cultures were incubated at 27°C for 2 days and colonies that were emerald green on EMB or white to gray on NA were selected for further studies. All bacterial cultures isolated from the survey exhibited pectolytic ability on potato slices. These bacterial isolates were gram negative; rod shaped; N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG positive; and were also positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. They were negative for indol production, phosphatase activity, reducing substances from sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-mathyl-D-glocoside, and D-arabitol. The bacteria did not grow on NA at 37°C. Based on these biochemical and morphological assays, the pathogen was identified as Pectobacterium wasabiae (2). In addition, DNA was extracted and PCR assay with two primers (16SF1 and 16SR1) was performed (4). Partial sequences of 16S rRNA (GenBank Accession Nos. JQ665714, JX494234, and JX513960) of sweet potato, tomato, and eggplant, respectively, exhibited a 99% identity with P. wasabiae strain SR91 (NR_026047 and NR_026047.1). A pathogenicity assay was carried out on sweet potato tubers (cv. Oren), tomato stems (cv. 152177-A), and eggplant fruits (cv. 125066x) with 4 randomly representative isolates obtained from each crop. Sweet potato tubers, tomato stems, and eggplant fruits (4 replications) were sanitized in 70% ethyl alcohol for 30 s, washed and rinsed in sterile distilled water, and needle punctured with a bacterial suspension at a concentration of 108 CFU/ml. Inoculated tubers, stems, and fruits were incubated in a moist chamber at 90 to 100% RH for 72 h at 25°C when lesions were measured. All inoculated tubers, stems, and fruits exhibited soft rot symptoms after 72 h similar to those observed in the fields and greenhouses and the same bacteria were consistently reisolated. Symptoms were not observed on controls. The pathogenicty test was repeated with similar results. P. wasabiae have been previously reported to cause soft rot on Japanese horseradish (3), and aerial stem rot on potato in New Zealand (4), the U.S. (2), and Iran (1). To our knowledge, this is the first report of sweet potato, tomato, and eggplant soft rot caused by P. wasabiae in Malaysia. References: (1) S. Baghaee-Ravari et al. Eur. J. Plant Pathol. 129:413, 2011. (2) S. De Boer and A. Kelman. Page 56 in: Laboratory Guide for Identification of Plant Pathogenic Bacteria, 3rd ed. N. Schaad et al., eds. APS Press, St. Paul, 2001. (3) M. Goto et al. Int. J. Syst. Bacteriol. 37:130, 1987. (4) A. R. Pitman et al. Eur. J. Plant Pathol. 126:423, 2010.
    Matched MeSH terms: RNA, Ribosomal, 16S
  4. Golkhandan E, Sijam K, Meon S, Ahmad ZAM, Nasehi A, Nazerian E
    Plant Dis, 2013 Aug;97(8):1110.
    PMID: 30722504 DOI: 10.1094/PDIS-01-13-0112-PDN
    Soft rot of cabbage (Brassica rapa) occurs sporadically in Malaysia, causing economic damage under the hot and wet Malaysian weather conditions that are suitable for disease development. In June 2011, 27 soft rotting bacteria were isolated from cabbage plants growing in the Cameron Highlands and Johor State in Malaysia where the economic losses exceeded 50% in severely infected fields and greenhouses. Five independent strains were initially identified as Pectobacterium wasabiae based on their inability to grow at 37°C, and elicit hypersensitive reaction (HR) on Nicotiana tabaccum and their ability to utilize raffinose and lactose. These bacterial strains were gram-negative, rod-shaped, N-acetylglucosaminyl transferase, gelatin liquefaction, and OPNG-positive and positive for acid production from D-galactose, lactosemelibiose, raffinose, citrate, and trehalose. All strains were negative for indole production, phosphatase activity, reducing sucrose, and negative for acid production from maltose, sorbitol, inositol, inolin, melezitose, α-methyl-D-glucoside, and D-arabitol. All the strains exhibited pectolytic activity on potato slices. PCR assays were conducted to distinguish P. wasabiae from P. carotovorum subsp. brasiliensis, P. atrosepticum, and other Pectobacterium species using primers Br1f/L1r (2), Eca1f/Eca2r (1), and EXPCCF/EXPCCR, respectively. DNA from strains did not yield the expected amplicon with the Br1f/L1r and Eca1f/Eca2r, whereas a 550-bp amplicon typical of DNA from P. wasabiae was produced with primers EXPCCF/EXPCCR. ITS-RFLP using the restriction enzyme, Rsa I, produced similar patterns for the Malaysian strains and the P. wasabiae type strain (SCRI488), but differentiated it from P. carotovora subsp. carotovora, P. atrosepticum, P. carotovorum subsp. brasiliensis, and Dickeya chrysanthemi type strains. BLAST analysis of the 16S rRNA DNA sequence (GenBank Accession No. KC445633) showed 99% identity to the 16S rRNA of Pw WPP163. Phylogenetic reconstruction using concatenated DNA sequences of mdh and gapA from P. wasabiae Cc6 (KC484657) and other related taxa (4) clustered Malaysian P. wasabiae strains with P. wasabiae SCRI488, readily distinguishing it from other closely related species of Pectobacterium. Pathogenicity assays were conducted on leaves and stems of four mature cabbage plants for each strain (var. oleifera) by injecting 10 μl of a bacterial suspension (108 CFU/ml) into either stems or leaves, and incubating them in a moist chamber at 80 to 90% relative humidity at 30°C. Water-soaked lesions similar to those observed in the fields and greenhouses were observed 72 h after injection and bacteria with similar characteristics were consistently reisolated. Symptoms were not observed on water-inoculated controls. The pathogenicity test was repeated with similar results. P. wasabiae was previously reported to cause soft rot of horseradish in Japan (3). However, to our knowledge, this is the first report of P. wasabiae infecting cabbage in Malaysia. References: (1) S. H. De Boer and L. J. Ward. Phytopathology 85:854, 1995. (2) V. Duarte et al. J. Appl. Microbiol. 96:535, 2004. (3) M. Goto and K. Matsumoto. Int. J. Syst. Bacteriol. 37:130, 1987. (4) B. Ma et al. Phytopathology 97:1150, 2007.
    Matched MeSH terms: RNA, Ribosomal, 16S
  5. Singh V, Haque S, Kumari V, El-Enshasy HA, Mishra BN, Somvanshi P, et al.
    Sci Rep, 2019 04 24;9(1):6482.
    PMID: 31019210 DOI: 10.1038/s41598-019-42740-7
    Arterial/venous thrombosis is the major cardiovascular disorder accountable for substantial mortality; and the current demand for antithrombotic agents is extensive. Heparinases depolymerize unfractionated heparin (UFH) for the production of low molecular-weight heparins (LMWHs; used as anticoagulants against thrombosis). A microbial strain of Streptomyces sp. showing antithrombotic activity was isolated from the soil sample collected from north India. The strain was characterized by using 16S rRNA homology technique and identified as Streptomyces variabilis MTCC 12266 capable of producing heparinase enzyme. This is the very first communication reporting Streptomyces genus as the producer of heparinase. It was observed that the production of intracellular heparinase was [63.8 U/mg protein (specific activity)] 1.58 folds higher compared to extracellular heparinase [40.28 U/mg protein]. DEAE-Sephadex A-50 column followed by Sepharose-6B column purification of the crude protein resulted 19.18 folds purified heparinase. SDS-PAGE analysis of heparinase resulted an estimated molecular-weight of 42 kDa. It was also found that intracellular heparinase has the ability to depolymerize heparin to generate LMWHs. Further studies related to the mechanistic action, structural details, and genomics involved in heparinase production from Streptomyces variabilis are warranted for large scale production/purification optimization of heparinase for antithrombotic applications.
    Matched MeSH terms: RNA, Ribosomal, 16S
  6. Roslan MAM, Zulkifli NN, Sobri ZM, Zuan ATK, Cheak SC, Abdul Rahman NA
    PLoS One, 2020;15(7):e0232860.
    PMID: 32645001 DOI: 10.1371/journal.pone.0232860
    Limited information is available that seed biopriming with plant growth-promoting Enterobacter spp. play a prominent role to enhance vegetative growth of plants. Contrary to Enterobacter cloacae, Enterobacter hormaechei is a less-studied counterpart despite its vast potential in plant growth-promotion mainly through the inorganic phosphorus (P) and potassium (K) solubilization abilities. To this end, 18 locally isolated bacterial pure cultures were screened and three strains showed high P- and K-solubilizing capabilities. Light microscopy, biochemical tests and 16S rRNA gene sequencing revealed that strains 15a1 and 40a were closely related to Enterobacter hormaechei while strain 38 was closely related to Enterobacter cloacae (Accession number: MN294583; MN294585; MN294584). All Enterobacter spp. shared common plant growth-promoting traits, namely nitrogen (N2) fixation, indole-3-acetic acid production and siderophore production. The strains 38 and 40a were able to produce gibberellic acid, while only strain 38 was able to secrete exopolysaccharide on agar. Under in vitro germination assay of okra (Abelmoschus esculentus) seeds, Enterobacter spp. significantly improved overall germination parameters and vigor index (19.6%) of seedlings. The efficacy of root colonization of Enterobacter spp. on the pre-treated seedling root tips was confirmed using Scanning Electron Microscopy (SEM). The pot experiment of bioprimed seeds of okra seedling showed significant improvement of the plant growth (> 28%) which corresponded to the increase of P and K uptakes (> 89%) as compared to the uninoculated control plants. The leaf surface area and the SPAD chlorophyll index of bioprimed plants were increased by up to 29% and 9% respectively. This report revealed that the under-explored species of P- and K-solubilizing Enterobacter hormaechei sp. with multiple plant beneficial traits presents a great potential sustainable approach for enhancement of soil fertility and P and K uptakes of plants.
    Matched MeSH terms: RNA, Ribosomal, 16S
  7. Amelia TSM, Lau NS, Amirul AA, Bhubalan K
    Data Brief, 2020 Aug;31:105971.
    PMID: 32685631 DOI: 10.1016/j.dib.2020.105971
    Marine sponges are acknowledged as a bacterial hotspot and resource of novel natural products or genetic material with industrial or commercial potential. However, sponge-associated bacteria are difficult to be cultivated and the production of their desirable metabolites is inadequate in terms of rate and quantity, yet bioinformatics and metagenomics tools are steadily progressing. Bacterial diversity profiles of high-microbial-abundance wild tropical marine sponges Aaptos aaptos and Xestospongia muta were obtained by sample collection at Pulau Bidong and Pulau Redang islands, 16S rRNA amplicon sequencing on Illumina HiSeq2500 platform (250 bp paired-end) and metagenomics analysis using Ribosomal Database Project (RDP) classifier. Raw sequencing data in fastq format and relative abundance histograms of the dominant 10 species are available in the public repository Discover Mendeley Data (http://dx.doi.org/10.17632/zrcks5s8xp). Filtered sequencing data of operational taxonomic unit (OTU) with chimera removed is available in NCBI accession numbers from MT464469 to MT465036.
    Matched MeSH terms: RNA, Ribosomal, 16S
  8. Lo RKS, Chong KP
    Data Brief, 2020 Aug;31:106030.
    PMID: 32743032 DOI: 10.1016/j.dib.2020.106030
    The oil palm industry, especially in Indonesia and Malaysia is being threatened by Basal Stem Rot (BSR) disease caused by Ganoderma boninense. There is no conclusive remedy in handling this disease effectively. In this study, metagenomics analysis of soil were analyzed for a better understanding of the microbial diversity in relation to BSR disease. Study was conducted in three plantation sites of Sabah, Malaysia which incorporated different disease management and agronomic practices. The estates are located at Sandakan (Kam Cheong Plantation), Lahad Datu (FGV Ladang Sahabat) and Tawau (Warisan Gagah). Soil samples were collected from disease free, high and low BSR incidence plots. Illumina MiSeq metagenomic analysis using V3-V4 region of 16S rRNA gene was employed to study the microbial diversity. Bacteria (97.4%) and Archaea (0.2%) were found majority in kingdom taxonomy level. The most abundant phyla were Proteobacteria, Acidobacteria, Actinobacteria, and Verrucomicrobia. Higher alpha diversity of all species was observed among all tested soil from each estates. Beta analysis was analyzed using non phylogenetic UnifRac matrix and visualized using Principal Coordinates Analysis (PCoA). The tested soil samples in Kam Cheong Plantation were found to have similar bacterial communities. The data provided is useful as an indicator in developing biology controls against Ganoderma boninense.
    Matched MeSH terms: RNA, Ribosomal, 16S
  9. Emrizal R, Nor Muhammad NA
    PeerJ, 2020;8:e9019.
    PMID: 32617187 DOI: 10.7717/peerj.9019
    Porphyromonas gingivalis is one of the major bacteria that causes periodontitis. Chronic periodontitis is a severe form of periodontal disease that ultimately leads to tooth loss. Virulence factors that contribute to periodontitis are secreted by Type IX Secretion System (T9SS). There are aspects of T9SS protein components that have yet to be characterised. Thus, the aim of this study is to investigate the phylogenetic relationship between members of 20 T9SS component protein families. The Bayesian Inference (BI) trees for 19 T9SS protein components exhibit monophyletic clades for all major classes under Bacteroidetes with strong support for the monophyletic clades or its subclades that is consistent with phylogeny exhibited by the constructed BI tree of 16S rRNA. The BI tree of PorR is different from the 19 BI trees of T9SS protein components as it does not exhibit monophyletic clades for all major classes under Bacteroidetes. There is strong support for the phylogeny exhibited by the BI tree of PorR which deviates from the phylogeny based on 16S rRNA. Hence, it is possible that the porR gene is subjected to horizontal transfer as it is known that virulence factor genes could be horizontally transferred. Seven genes (porR included) that are involved in the biosynthesis of A-LPS are found to be flanked by insertion sequences (IS5 family transposons). Therefore, the intervening DNA segment that contains the porR gene might be transposed and subjected to conjugative transfer. Thus, the seven genes can be co-transferred via horizontal gene transfer. The BI tree of UgdA does not exhibit monophyletic clades for all major classes under Bacteroidetes which is similar to the BI tree of PorR (both are a part of the seven genes). Both BI trees also exhibit similar topology as the four identified clusters with strong support and have similar relative positions to each other in both BI trees. This reinforces the possibility that porR and the other six genes might be horizontally transferred. Other than the BI tree of PorR, the 19 other BI trees of T9SS protein components also exhibit evidence of horizontal gene transfer. However, their genes might undergo horizontal gene transfer less frequently compared to porR because the intervening DNA segment that contains porR is easily exchanged between bacteria under Bacteroidetes due to the presence of insertion sequences (IS5 family transposons) that flank it. In conclusion, this study can provide a better understanding about the phylogeny of T9SS protein components.
    Matched MeSH terms: RNA, Ribosomal, 16S
  10. Voon WW, Rukayadi Y, Meor Hussin AS
    Lett Appl Microbiol, 2016 May;62(5):428-33.
    PMID: 27002476 DOI: 10.1111/lam.12568
    Biocellulose (BC) is pure extracellular cellulose produced by several species of micro-organisms that has numerous applications in the food, biomedical and paper industries. However, the existing biocellulose-producing bacterial strain with high yield was limited. The aim of this study was to isolate and identify the potential biocellulose-producing bacterial isolates from Malaysian acidic fruits. One hundred and ninety-three bacterial isolates were obtained from 19 local acidic fruits collected in Malaysia and screened for their ability to produce BC. A total of 15 potential bacterial isolates were then cultured in standard Hestrin-Schramm (HS) medium statically at 30°C for 2 weeks to determine the BC production. The most potent bacterial isolates were identified using 16S rRNA gene sequence analysis, morphological and biochemical characteristics. Three new and potent biocellulose-producing bacterial strains were isolated from soursop fruit and identified as Stenotrophomonas maltophilia WAUPM42, Pantoea vagans WAUPM45 and Beijerinckia fluminensis WAUPM53. Stenotrophomonas maltophilia WAUPM42 was the most potent biocellulose-producing bacterial strain that produced the highest amount of BC 0·58 g l(-1) in standard HS medium. Whereas, the isolates P. vagans WAUPM45 and B. fluminensis WAUPM53 showed 0·50 and 0·52 g l(-1) of BC production, respectively.
    Matched MeSH terms: RNA, Ribosomal, 16S
  11. Omoregie AI, Ong DEL, Nissom PM
    Lett Appl Microbiol, 2019 Feb;68(2):173-181.
    PMID: 30537001 DOI: 10.1111/lam.13103
    Biocalcification through the use of ureolytic bacteria and biochemical activities has evolved in recent decades into a fervent resourceful effective technology suitable for soil stabilization, crack repair and bioremediation. Extensive studies have been carried out on numerous ureolytic bacterial species isolated from soils and sewage samples. However, very limited attention has been given to limestone caves with natural calcite formations as a possible source for isolation of ureolytic bacteria. In this study, bacterial isolates were recovered from limestone cave samples to determine their suitability for biocalcification. Twenty-seven morphologically distinct bacterial isolates were identified by partial 16S rRNA gene sequencing and their various genetic diversity was characterized according to their phylogenetic affiliations. Based on the molecular identification, Sporosarcina was the most abundant genus among all the ureolytic isolates, while the rest belonged to Pseudogracilibacillus and Bacillus genera. Analytical analysis on urease measurement showed that urease activities for the isolates ranged from 1·130 to 21·513 mol urea hydrolysed per minute, with isolate NB33 achieving the highest value and TSB4 achieving the lowest value. The estimated CaCO3 precipitates for the isolates ranged from 4·04 to 17·26 mg ml-1 , with isolate NB30 achieving the highest value and TSB20 achieving the lowest value. The findings in this study demonstrated that the ureolytic bacteria from limestone caves are promising bio-calcifying agents. SIGNIFICANCE AND IMPACT OF THE STUDY: Ureolytic bacteria continues to play an important role as microbial tools used in geotechnical engineering for soil biocalcification. Microbial strains with the ability to produce urease enzyme and induce calcium carbonate mineral are often isolated from soil, water and sludge samples. However, screening for these essential microbes from extreme regions such as caves are rarely investigated. In this study, native bacteria which were isolated from limestone cave samples are identified and characterized. The findings suggested that these ureolytic bacterial isolates have the potential to serve as suitable alternative microbial agents for soil strengthening and stabilization.
    Matched MeSH terms: RNA, Ribosomal, 16S
  12. Tamadoni Jahromi S, Othman AS, Rosazlina R
    Biochem Genet, 2018 Aug 12.
    PMID: 30099639 DOI: 10.1007/s10528-018-9884-3
    There are two morphotypes of Penaeus semisulcatus described hitherto in the Persian Gulf, namely the banded and non-banded antennae morphotypes. In this study, we used morphometric measurements and two mitochondrial genes (16S rRNA and cytochrome oxidase subunit I-COI) to assess relationships between the two morphotypes of P. semisulcatus. Out of 25 morphological characters examined, 10 characters were found significantly different between the two morphotypes when tested against separate sexes or both sexes combined. Results from the 16S rRNA and COI sequence analysis of two morphotypes of P. semisulcatus morphotype showed up to 6% and 17% sequence divergence, respectively. The 16S rDNA and COI sequences of the non-banding morphotype were not only very different to those of the banding morphotype but was also very different to all other Penaeus species (i.e., P. monodon, P. merguiensis, and P. indicus) included in the study. Both parsimony and Neighbor-Joining trees based on 16S rDNA and COI sequences provide similar tree topology that clearly separated the two morphotypes into two distinct groups. Based on these findings, we propose the two morphotypes of P. semisulcatus to be relegated as two sympatric species.
    Matched MeSH terms: RNA, Ribosomal, 16S
  13. Chiu YW, Gan YC, Kuo PH, Hsu KC, Tan MS, Ju YM, et al.
    Biochem Genet, 2018 Oct 26.
    PMID: 30367289 DOI: 10.1007/s10528-018-9892-3
    According to geological history, Peninsular Malaysia and Borneo formed at different times and were once connected during Quaternary glaciations. To determine how this history has influenced phylogeography, our study examined the population genetic structure of the tropical freshwater gastropod Melanoides tuberculata across Peninsular Malaysia and Borneo using the sequences from mitochondrial DNA 16S rRNA and cytochrome oxidase subunit I genes (1168 bp). In total, 104 specimens were collected from seventeen populations. All mtDNA haplotypes were identified as belonging to two highly divergent lineages, and these lineages were almost allopatric in their distributions. Our study found that the freshwater fauna in Malaysia might be divided into four regions: northeast Peninsular Malaysia, northwest Peninsular Malaysia, south Peninsular Malaysia, and Borneo. The phylogeography of M. tuberculata in Malaysia was shaped by the landforms of Peninsular Malaysia and by the paleo-river systems in the Sunda continental shelf. In addition, our study found that these two lineages in Malaysia have invaded the globe. These results suggest that Malaysia is located in important shipping lanes throughout the world, and the populations of M. tuberculate might be widely distributed throughout the world by shipping.
    Matched MeSH terms: RNA, Ribosomal, 16S
  14. Nur Aisyah Atikah Alizan, Sarah S. Zakaria
    MyJurnal
    Bacteria of the genus Komagataeibacter are described to be the most noteworthy for having several of its species being efficient and strong cellulose producers. The 16S ribosomal RNA (rRNA) gene analysis is often used for the identification and taxonomic classification of these bacteria species. In order to observe the phylogenetic relationship among Komagataeibacter sp., twelve sequences of the 16S rRNA gene with three sequences each for species namely Komagataeibacter europaeus, Komagataeibacter hansenii, Komagataeibacter intermedius and Komagataeibacter xylinus were retrieved from NCBI GenBank database. The sequences were aligned and analysed using PAUP, OrthoANI and BLAST, followed by the phylogenetic tree construction using a Maximum Likelihood method. The parsimony character diagnostic analysis showed very few numbers of parsimony- informative characters present in the aligned sequences which is only 1.5% of the total characters. The inferred phylogenetic relationships demonstrated the unexpected positioning of K. xylinus (GQ240638: Gluconacetobacter xylinus strain) and K. xylinus (KC11853: G. xylinus strain) into the clades of K. europaeus and K. hansenii respectively. The also very low bootstrap values of the branch points linking the K. europaeus species indicated low support for the produced topologies. The findings of this study indicate that more phylogenies information can be attained by increasing the taxon sampling. In addition, more robust molecular data are needed to infer the phylogenetic relationships between the Komagataeibacter species more accurately.
    Matched MeSH terms: RNA, Ribosomal, 16S
  15. Drinkwater R, Jucker T, Potter JHT, Swinfield T, Coomes DA, Slade EM, et al.
    Mol Ecol, 2021 07;30(13):3299-3312.
    PMID: 33171014 DOI: 10.1111/mec.15724
    The application of metabarcoding to environmental and invertebrate-derived DNA (eDNA and iDNA) is a new and increasingly applied method for monitoring biodiversity across a diverse range of habitats. This approach is particularly promising for sampling in the biodiverse humid tropics, where rapid land-use change for agriculture means there is a growing need to understand the conservation value of the remaining mosaic and degraded landscapes. Here we use iDNA from blood-feeding leeches (Haemadipsa picta) to assess differences in mammalian diversity across a gradient of forest degradation in Sabah, Malaysian Borneo. We screened 557 individual leeches for mammal DNA by targeting fragments of the 16S rRNA gene and detected 14 mammalian genera. We recorded lower mammal diversity in the most heavily degraded forest compared to higher quality twice logged forest. Although the accumulation curves of diversity estimates were comparable across these habitat types, diversity was higher in twice logged forest, with more taxa of conservation concern. In addition, our analysis revealed differences between the community recorded in the heavily logged forest and that of the twice logged forest. By revealing differences in mammal diversity across a human-modified tropical landscape, our study demonstrates the value of iDNA as a noninvasive biomonitoring approach in conservation assessments.
    Matched MeSH terms: RNA, Ribosomal, 16S
  16. Naresh S, Kunasundari B, Gunny AAN, Teoh YP, Shuit SH, Ng QH, et al.
    Trop Life Sci Res, 2019 Jan;30(1):123-147.
    PMID: 30847037 MyJurnal DOI: 10.21315/tlsr2019.30.1.8
    This study reports the biodiversity of thermophilic cellulolytic bacterial strains that present in the north Malaysian mangrove ecosystem. Soil samples were collected at the four most northern state of Malaysia (Perak, Pulau Pinang, Kedah and Perlis). The samples obtained were first enriched in nutrient broth at 45°C and 55°C prior culturing in the carboxymethylcellulose (CMC) agar medium. Repeated streaking was performed on the CMC agar to obtain a pure culture of each isolate prior subjecting it to hydrolysis capacity testing. The isolates that showing the cellulolytic zone (halozone) were sent for 16S rRNA sequencing. Total seven isolates (two from Perak, three from Kedah, another two were from Perlis and Penang each) showed halozone. The isolate (KFX-40) from Kedah exhibited highest halozone of 3.42 ± 0.58, meanwhile, the one obtained from Perak (AFZ-0) showed the lowest hydrolysis capacity (2.61 ± 0.10). Based on 16S rRNA sequencing results, 5 isolates (AFY-40, AFZ-0, KFX-40, RFY-20, and PFX-40) were determined to be Anoxybacillus sp. The other two isolates were identified as Bacillus subtilis (KFY-40) and Paenibacillus dendritiformis (KFX-0). Based on growth curve, doubling time of Anoxybacillus sp. UniMAP-KB06 was calculated to be 32.3 min. Optimal cellulose hydrolysis temperature and pH of this strain were determined to be 55°C and 6.0 respectively. Addition of Mg2+ and Ca2+ were found to enhance the cellulase activity while Fe3+ acted as an enzyme inhibitor.
    Matched MeSH terms: RNA, Ribosomal, 16S
  17. Bala JD, Lalung J, Al-Gheethi AAS, Hossain K, Ismail N
    Trop Life Sci Res, 2018 Jul;29(2):131-163.
    PMID: 30112146 MyJurnal DOI: 10.21315/tlsr2018.29.2.10
    This study was aimed at identifying indigenous microorganisms from palm oil mill effluent (POME) and to ascertain the microbial load. Isolation and identification of indigenous microorganisms was subjected to standard microbiological methods and sequencing of the 16S rRNA and 18S rRNA genes. Sequencing of the 16S rRNA and 18S rRNA genes for the microbial strains signifies that they were known as Micrococcus luteus 101PB, Stenotrophomonas maltophilia 102PB, Bacillus cereus 103PB, Providencia vermicola 104PB, Klebsiella pneumoniae 105PB, Bacillus subtilis 106PB, Aspergillus fumigatus 107PF, Aspergillus nomius 108PF, Aspergillus niger 109PF and Meyerozyma guilliermondii 110PF. Results revealed that the population of total heterotrophic bacteria (THB) ranged from 9.5 × 105 - 7.9 × 106 cfu/mL. The total heterotrophic fungi (THF) ranged from 2.1 × 104 - 6.4 × 104 cfu/mL. Total viable heterotrophic indigenous microbial population on CMC agar ranged from 8.2 × 105 - 9.1 × 106 cfu/mL and 1.4 × 103 - 3.4 × 103 cfu/mL for bacteria and fungi respectively. The microbial population of oil degrading bacteria (ODB) ranged from 6.4 × 105 - 4.8 × 106 cfu/mL and the oil degrading fungi (ODF) ranged from 2.8 × 103 - 4.7 × 104 cfu/mL. The findings revealed that microorganisms flourish well in POME. Therefore, this denotes that isolating native microorganisms from POME is imperative for effectual bioremediation, biotreatment and biodegradation of industrial wastewaters.
    Matched MeSH terms: RNA, Ribosomal, 16S
  18. Matsui M, Kuraishi N, Eto K, Hamidy A, Nishikawa K, Shimada T, et al.
    Mol Phylogenet Evol, 2016 09;102:305-19.
    PMID: 27374495 DOI: 10.1016/j.ympev.2016.06.009
    A fanged frog Limnonectes kuhlii was once thought to be wide-ranging in Southeast Asia, but is now confined to its type locality Java through recent phylogenetic studies, which clarified heterospecific status of non-Javanese populations, and monophyly of Bornean populations. However, large genetic differences among Bornean populations suggest occurrence of cryptic species, which we test using dense geographic sampling. We estimated the phylogenetic relationships among samples of Bornean populations together with their putative relatives from the continental Southeast Asia, using 2517bp sequences of the 12S rRNA, tRNA(val), and 16S rRNA of mitochondrial DNA, and 2367bp sequences of the NCX1, POMC, and RAG1 of nuclear genes. In the mtDNA trees, Bornean L. kuhlii-like frogs formed a monophyletic group split into 18 species lineages including L. hikidai, with the deepest phylogenetic split separating L. cintalubang from the remaining species. Almost all of these lineages co-occur geographically, and two to three lineages were found syntopically in each locality. Co-occurrence of more than one lineage may be maintained by differential morphology and microhabitat selection. These syntopic lineages should be regarded as distinct species. Our results clearly indicate that taxonomic revision is urgent to clarify many evolutionary problems of Bornean L. kuhlii-like frogs.
    Matched MeSH terms: RNA, Ribosomal, 16S/genetics; RNA, Ribosomal, 16S/metabolism; RNA, Ribosomal, 16S/chemistry
  19. Devaraj K, Tan GYA, Chan KG
    Arch Microbiol, 2017 Aug;199(6):897-906.
    PMID: 28364274 DOI: 10.1007/s00203-017-1371-4
    In this study, a total of 147 soil actinobacterial strains were screened for their ability to inhibit response of Chromobacterium violaceum CV026 to short chain N-acyl homoserine lactone (AHL) which is a quorum sensing molecule. Of these, three actinobacterial strains showed positive for violacein inhibition. We further tested these strains for the inhibition of Pseudomonas aeruginosa PAO1 quorum sensing-regulated phenotypes, namely, swarming and pyocyanin production. The three strains were found to inhibit at least one of the quorum sensing-regulated phenotypes of PAO1. Phylogenetic analysis of the 16S rRNA gene sequences indicated that these strains belong to the genera Micromonospora, Rhodococcus and Streptomyces. This is the first report presenting quorum quenching activity by a species of the genus Micromonospora. Our data suggest that Actinobacteria may be a rich source of active compounds that can act against bacterial quorum sensing system.
    Matched MeSH terms: RNA, Ribosomal, 16S
  20. Chan CS, Chan KG, Ee R, Hong KW, Urbieta MS, Donati ER, et al.
    Front Microbiol, 2017;8:1252.
    PMID: 28729863 DOI: 10.3389/fmicb.2017.01252
    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3-V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334-26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.
    Matched MeSH terms: RNA, Ribosomal, 16S
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links