Affiliations 

  • 1 Faculty of Applied Sciences, Universiti Teknologi MARA, Negeri Sembilan Branch, Kuala Pilah Campus, Kuala Pilah, Negeri Sembilan 72000, Malaysia; Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia. Electronic address: [email protected]
  • 2 Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK. Electronic address: [email protected]
  • 3 Division of Irrigation and Drainage Engineering, ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India
  • 4 Research School of Engineering, College of Engineering and Computer Science, Australian National University, Acton, ACT 2601, Australia
  • 5 Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment, ATC Building, Callaghan, NSW 2308, Australia
J Colloid Interface Sci, 2021 Sep 22;608(Pt 1):575-587.
PMID: 34628317 DOI: 10.1016/j.jcis.2021.09.109

Abstract

Development of polymeric magnetic adsorbents is a promising approach to obtain efficient treatment of contaminated water. However, the synthesis of magnetic composites involving multiple components frequently involves tedious preparation steps. In the present study, a magnetic chitosan-palygorskite (MCP) nanocomposite was prepared through a straight-forward one pot synthesis approach to evaluate its lead (Pb2+) removal capacity from aqueous solution. The nano-architectural and physicochemical properties of the newly-developed MCP composite were described via micro- and nano-morphological analyses, and crystallinity, surface porosity and magnetic susceptibility measurements. The MCP nanocomposite was capable to remove up to 58.5 mg Pb2+ g-1 of MCP from water with a good agreement of experimental data to the Langmuir isotherm model (R2 = 0.98). The Pb2+ adsorption process on MCP was a multistep diffusion-controlled phenomenon evidenced by the well-fitting of kinetic adsorption data to the intra-particle diffusion model (R2 = 0.96). Thermodynamic analysis suggested that the adsorption process at low Pb2+ concentration was controlled by chemisorption, whereas that at high Pb2+ concentration was dominated by physical adsorption. X-ray photoelectron and Fourier transform infrared spectroscopy results suggested that the Pb adsorption on MCP was governed by surface complexation and chemical reduction mechanisms. During regeneration, the MCP retained 82% Pb2+ adsorption capacity following four adsorption-desorption cycles with ease to recover the adsorbent using its strong magnetic property. These findings highlight the enhanced structural properties of the easily-prepared nanocomposite which holds outstanding potential to be used as an inexpensive and green adsorbent for remediating Pb2+ contaminated water.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.