Development of polymeric magnetic adsorbents is a promising approach to obtain efficient treatment of contaminated water. However, the synthesis of magnetic composites involving multiple components frequently involves tedious preparation steps. In the present study, a magnetic chitosan-palygorskite (MCP) nanocomposite was prepared through a straight-forward one pot synthesis approach to evaluate its lead (Pb2+) removal capacity from aqueous solution. The nano-architectural and physicochemical properties of the newly-developed MCP composite were described via micro- and nano-morphological analyses, and crystallinity, surface porosity and magnetic susceptibility measurements. The MCP nanocomposite was capable to remove up to 58.5 mg Pb2+ g-1 of MCP from water with a good agreement of experimental data to the Langmuir isotherm model (R2 = 0.98). The Pb2+ adsorption process on MCP was a multistep diffusion-controlled phenomenon evidenced by the well-fitting of kinetic adsorption data to the intra-particle diffusion model (R2 = 0.96). Thermodynamic analysis suggested that the adsorption process at low Pb2+ concentration was controlled by chemisorption, whereas that at high Pb2+ concentration was dominated by physical adsorption. X-ray photoelectron and Fourier transform infrared spectroscopy results suggested that the Pb adsorption on MCP was governed by surface complexation and chemical reduction mechanisms. During regeneration, the MCP retained 82% Pb2+ adsorption capacity following four adsorption-desorption cycles with ease to recover the adsorbent using its strong magnetic property. These findings highlight the enhanced structural properties of the easily-prepared nanocomposite which holds outstanding potential to be used as an inexpensive and green adsorbent for remediating Pb2+ contaminated water.
A palygorskite-iron oxide nanocomposite (Pal-IO) was synthesized in situ by embedding magnetite into the palygorskite structure through co-precipitation method. The physico-chemical characteristics of Pal-IO and their pristine components were examined through various spectroscopic and micro-analytical techniques. Batch adsorption experiments were conducted to evaluate the performance of Pal-IO in removing Pb(II) from aqueous solution. The surface morphology, magnetic recyclability and adsorption efficiency of regenerated Pal-IO using desorbing agents HCl (Pal-IO-HCl) and ethylenediaminetetraacetic acid disodium salt (EDTA-Na2) (Pal-IO-EDTA) were compared. The nanocomposite showed a superparamagnetic property (magnetic susceptibility: 20.2 emu g-1) with higher specific surface area (99.8 m2 g-1) than the pristine palygorskite (49.4 m2 g-1) and iron oxide (72.6 m2 g-1). Pal-IO showed a maximum Pb(II) adsorption capacity of 26.6 mg g-1 (experimental condition: 5 g L-1 adsorbent loading, 150 agitations min-1, initial Pb(II) concentration from 20 to 500 mg L-1, at 25 °C) with easy separation of the spent adsorbent. The adsorption data best fitted to the Langmuir isotherm model (R2 = 0.9995) and pseudo-second order kinetic model (R2 = 0.9945). Pb(II) desorption using EDTA as the complexing agent produced no disaggregation of Pal-IO crystal bundles, and was able to preserve the composite's magnetic recyclability. Pal-IO-EDTA exhibited almost 64% removal capacity after three cycles of regeneration and preserved the nanocomposite's structural integrity and magnetic properties (15.6 emu g-1). The nanocomposite holds advantages as a sustainable material (easily separable and recyclable) for potential application in purifying heavy metal contaminated wastewaters.
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.