In this paper we present a novel health monitoring method by estimating the heart rate and respiratory rate using an RGB camera. The heart rate and the respiratory rate are estimated from the photoplethysmography (PPG) and the respiratory motion. The method mainly operates by using the green spectrum of the RGB camera to generate a multivariate PPG signal to perform multivariate de-noising on the video signal to extract the resultant PPG signal. A periodicity based voting scheme (PVS) was used to measure the heart rate and respiratory rate from the estimated PPG signal. We evaluated our proposed method with a state of the art heart rate measuring method for two scenarios using the MAHNOB-HCI database and a self collected naturalistic environment database. The methods were furthermore evaluated for various scenarios at naturalistic environments such as a motion variance session and a skin tone variance session. Our proposed method operated robustly during the experiments and outperformed the state of the art heart rate measuring methods by compensating the effects of the naturalistic environment.
* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.