Affiliations 

  • 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China
  • 2 Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Serdang, 410500, Selangor, Malaysia
  • 3 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Reacher Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No. 1800, Lihu Road, Wuxi, 214122, Jiangsu, People's Republic of China. [email protected]
Anal Bioanal Chem, 2024 Jul;416(18):4111-4122.
PMID: 38772972 DOI: 10.1007/s00216-024-05335-4

Abstract

Branched fatty acid esters of hydroxy fatty acids (FAHFAs) represent trace lipids with significant natural biological functions. While exogenous FAHFAs have been extensively studied, research on FAHFAs in milk remains limited, constraining our grasp of their nutritional roles. This study introduces a non-targeted mass spectrometry approach combined with chemical networking of spectral fragmentation patterns to uncover FAHFAs. Through meticulous sample handling and comparisons of various data acquisition and processing modes, we validate the method's superiority, identifying twice as many FAHFAs compared to alternative techniques. This validated method was then applied to different milk samples, revealing 45 chemical signals associated with known and potential FAHFAs, alongside findings of 66 ceramide/hexosylceramide (Cer/HexCer), 48 phosphatidyl ethanolamine/lyso phosphatidyl ethanolamine (PE/LPE), 21 phosphatidylcholine/lysophosphatidylcholine (PC/LPC), 16 phosphatidylinositol (PI), 7 phosphatidylserine (PS), and 11 sphingomyelin (SM) compounds. This study expands our understanding of the FAHFA family in milk and provides a fast and convenient method for identifying FAHFAs.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.