Affiliations 

  • 1 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
  • 2 Department of Food Technology, Faculty of Food Science and Technology, University Putra Malaysia, Selangor 410500, Malaysia
  • 3 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China. Electronic address: [email protected]
  • 4 State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China. Electronic address: [email protected]
Int J Biol Macromol, 2023 Jul 31;244:125311.
PMID: 37302627 DOI: 10.1016/j.ijbiomac.2023.125311

Abstract

Astaxanthin (AST) has outstanding antioxidant and anti-inflammation bioactivities, but the low biocompatibility and stability limit its application in foods. In this study, N-succinyl-chitosan (NSC)-coated AST polyethylene glycol (PEG)-liposomes were constructed to enhance the biocompatibility, stability, and intestinal-targeted migration of AST. The AST NSC/PEG-liposomes were uniform in size, had larger particles, greater encapsulation efficiency, and better storage, pH, and temperature stability than the AST PEG-liposomes. AST NSC/PEG-liposomes exerted stronger antibacterial and antioxidant activities against Escherichia coli and Staphylococcus aureus than AST PEG-liposomes. The NSC coating not only protects AST PEG-liposomes from gastric acid but also prolongs the retention and sustained release of AST NSC/PEG-liposomes depending on the intestinal pH. Moreover, caco-2 cellular uptake studies showed that AST NSC/PEG-liposomes had higher cellular uptake efficiency than AST PEG-liposomes. And AST NSC/PEG-liposomes were taken up by caco-2 cells through clathrin mediated endocytic, macrophage pathways and paracellular transport pathway. These results further proved that AST NSC/PEG-liposomes delayed the release and promoted the intestinal absorption of AST. Hence, AST PEG-liposomes coated with NSC could potentially be used as an efficient delivery system for therapeutic AST.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.