Affiliations 

  • 1 Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 7: Affordable and Clean Energy, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria. Electronic address: [email protected]
  • 2 Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria
  • 3 Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 11: Sustainable Cities and Communities, P.M.B.1001, Omu-Aran, Kwara, Nigeria. Electronic address: [email protected]
  • 4 Department of Chemical Sciences, Redeemer's University, P.M.B 230, Ede, Osun State, Nigeria
  • 5 Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC, 3030, Australia
  • 6 Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria; Landmark University Sustainable Development Goal 6: Clean Water and Sanitation, P.M.B.1001, Omu-Aran, Kwara, Nigeria
  • 7 Department of Industrial Chemistry, University of Ilorin, P.M.B. 1515, Ilorin, Kwara State, Nigeria
  • 8 Industrial Chemistry Programme, Nanotechnology Laboratory, Department of Physical Sciences, Landmark University, P.M.B.1001, Omu-Aran, Kwara, Nigeria
  • 9 Department of Energy & Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India. Electronic address: [email protected]
Environ Res, 2024 May 03;252(Pt 3):119046.
PMID: 38704004 DOI: 10.1016/j.envres.2024.119046

Abstract

Reports have shown that malachite green (MG) dye causes various hormonal disruptions and health hazards, hence, its removal from water has become a top priority. In this work, zinc oxide decorated plantain peels activated carbon (ZnO@PPAC) was developed via a hydrothermal approach. Physicochemical characterization of the ZnO@PPAC nanocomposite with a 205.2 m2/g surface area, porosity of 614.68 and dominance of acidic sites from Boehm study established the potency of ZnO@PPAC. Spectroscopic characterization of ZnO@PPAC vis-a-viz thermal gravimetric analyses (TGA), Fourier Transform Infrared Spectroscopy (FTIR), Powdered X-ray Diffraction (PXRD), Scanning Electron Microscopy and High Resolution - Transmission Electron Microscopy (HR-TEM) depict the thermal stability via phase transition, functional group, crystallinity with interspatial spacing, morphology and spherical and nano-rod-like shape of the ZnO@PPAC heterostructure with electron mapping respectively. Adsorption of malachite green dye onto ZnO@PPAC nanocomposite was influenced by different operational parameters. Equilibrium data across the three temperatures (303, 313, and 323 K) were most favorably described by Freundlich indicating the ZnO@PPAC heterogeneous nature. 77.517 mg/g monolayer capacity of ZnO@PPAC was superior to other adsorbents compared. Pore-diffusion predominated in the mechanism and kinetic data best fit the pseudo-second-order. Thermodynamics studies showed the feasible, endothermic, and spontaneous nature of the sequestration. The ZnO@PPAC was therefore shown to be a sustainable and efficient material for MG dye uptake and hereby endorsed for the treatment of industrial effluent.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.