Affiliations 

  • 1 Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia. Electronic address: [email protected]
  • 2 Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia; School of Mathematics and Physics, University of Surrey, Guildford, GU2 7XH, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, Gower Street, London, WC1E 6BT, United Kingdom
  • 3 Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
  • 4 Research Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia; Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, DIU Rd, Dhaka, 1341, Bangladesh
  • 5 Department of Physics, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
Appl Radiat Isot, 2023 Sep;199:110920.
PMID: 37419002 DOI: 10.1016/j.apradiso.2023.110920

Abstract

The present study continues research into the utilisation of carbonaceous media for medical radiation dosimetry, focusing on the effects of surface area-to-volume ratio and carbon content on structural interaction alterations and dosimetric properties in sheet- and bead-type graphitic materials (with the respective carbon content of ∼98 wt% and ∼90 wt%). Using 60Co gamma-rays and doses from 0.5 Gy to 20 Gy, the study has been made of the response of commercially available graphite in the form of 0.1 mm, 0.2 mm, 0.3 mm and 0.5 mm thick sheets, also of activated carbon beads. Confocal Raman and photoluminescence spectroscopy have been employed, examining radiation-induced structural interaction alterations. Dose-dependent variation in the Raman intensity ratio ID/IG relates to the varying dominance of defect generation and dose-driven defect annealing. Of the various thickness graphite sheets, the 0.1 mm thick medium possesses the greatest surface area-to-volume ratio. Perhaps unsurprisingly, it also exhibits the greatest thermoluminescence (TL) yield compared to that of the other carbonaceous sheet foils used herein. Moreover, the second greatest mass-normalised TL yield has been observed to be that of the porous beads, reflected in the greater defect density (ID/IG > 2) when compared to the other media, due in part to their inherent feature of large internal surface area. Considering the challenge posed in matching skin thickness with skin dose, the near tissue equivalent graphite sheets show particular promise as a skin dosimeter, sensitive as a function of depth.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.