Affiliations 

  • 1 Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
  • 2 PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
  • 3 CO(2) Research Center (CO2RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Malaysia
  • 4 Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia; Energy and Environment Research Cluster, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri Sarawak, Malaysia
  • 5 Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia; Institute of Sustainable and Renewable Energy (ISuRE), Universiti Malaysia Sarawak (UNIMAS), 94300 Kota Samarahan, Sarawak, Malaysia
  • 6 Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
  • 7 Chemical Engineering Department, Monash University, 3180 Victoria, Australia
  • 8 Centre for Research of Innovation and Sustainable Development, University of Technology Sarawak, No.1, Jalan Universiti, Sibu, Sarawak, Malaysia
  • 9 Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia
  • 10 Henan Province Forest Resources Sustainable Development and High-value Utilization Engineering Research Center, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 Johor, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India. Electronic address: [email protected]
Bioresour Technol, 2023 Feb;369:128478.
PMID: 36513306 DOI: 10.1016/j.biortech.2022.128478

Abstract

The valorization and conversion of biomass into various value-added products and bioenergy play an important role in the realization of sustainable circular bioeconomy and net zero carbon emission goals. To that end, microwave technology has been perceived as a promising solution to process and manage oil palm waste due to its unique and efficient heating mechanism. This review presents an in-depth analysis focusing on microwave-assisted torrefaction, gasification, pyrolysis and advanced pyrolysis of various oil palm wastes. In particular, the products from these thermochemical conversion processes are energy-dense biochar (that could be used as solid fuel, adsorbents for contaminants removal and bio-fertilizer), phenolic-rich bio-oil, and H2-rich syngas. However, several challenges, including (1) the lack of detailed study on life cycle assessment and techno-economic analysis, (2) limited insights on the specific foreknowledge of microwave interaction with the oil palm wastes for continuous operation, and (3) effects of tunable parameters and catalyst's behavior/influence on the products' selectivity and overall process's efficiency, remain to be addressed in the context of large-scale biomass valorization via microwave technology.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.