Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Break MKB, Chiang M, Wiart C, Chin CF, Khoo ASB, Khoo TJ
    Nutr Cancer, 2021;73(3):473-483.
    PMID: 32270712 DOI: 10.1080/01635581.2020.1751217
    Boesenbergia rotunda (L.) Mansf. is an edible herb that is commonly used in the cuisine of several Asian countries. Studies have shown that it possesses high bioactivity against a variety of cancer cells. In this study, we investigated the cytotoxic activity of Boesenbergia rotunda rhizomes and some of its constituents on nasopharyngeal carcinoma cells (HK1). MTT assay results showed that the methanolic and hexane extracts of Boesenbergia rotunda decreased HK1 cell viability with IC50 values of 136 µg/ml and 66 µg/ml, respectively. Cardamonin, a constituent of Boesenbergia rotunda, exhibited the highest cytotoxic activity with an IC50 value of 27 μg/ml. Further studies on cardamonin revealed that it inhibited the migration of HK1 cells, caused G2/M-phase arrest and induced apoptosis. Apoptosis was induced via activating caspase-8 and caspase-3, but independent of caspase-9. This indicated that cardamonin induced extrinsic apoptosis. Western blot analysis further showed that cardamonin caused extrinsic apoptosis, as the expression levels of intrinsic apoptosis-related proteins (Bcl-XL, Bcl-2 and Bax), were not affected. Finally, JC-1 staining of HK1 cells revealed an increase in the mitochondrial membrane potential after treatment, further proving that cardamonin did not induce apoptosis via the intrinsic pathway. These results reflect cardamonin's potential as an anticancer agent.
    Matched MeSH terms: Zingiberaceae*
  2. Ismail NA, Rafii MY, Mahmud TMM, Hanafi MM, Miah G
    Biomed Res Int, 2019;2019:5904804.
    PMID: 31198786 DOI: 10.1155/2019/5904804
    Fifty-seven accessions of torch ginger (Etlingera elatior) collected from seven states in Peninsular Malaysia were evaluated for their molecular characteristics using ISSR and SSR markers to assess the pattern of genetic diversity and association among the characteristics. Diversity study through molecular characterization showed that high variability existed among the 57 torch ginger accessions. ISSR and SSR molecular markers revealed the presence of high genetic variability among the torch ginger accessions. The combination of different molecular markers offered reliable and convincing information about the genetic diversity of torch ginger germplasm. This study found that SSR marker was more informative compared to ISSR marker in determination of gene diversity, polymorphic information content (PIC), and heterozygosity in this population. SSR also revealed high ability in evaluating diversity levels, genetic structure, and relationships of torch ginger due to their codominance and rich allelic diversity. High level of genetic diversity discovered by SSR markers showed the effectiveness of this marker to detect the polymorphism in this germplasm collection.
    Matched MeSH terms: Zingiberaceae/genetics*
  3. Amil MA, Rahman SNSA, Yap LF, Razak FA, Bakri MM, Salem LSO, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301836.
    PMID: 38253795 DOI: 10.1002/cbdv.202301836
    Essential oils have been recognised for their potential benefits in oral care. The aim of this study was to evaluate the antibacterial and antiproliferative activity of essential oils derived from four Zingiberaceae species. A combination of GC/MS and GC-FID was employed to analyse these essential oils. The results showed that β-myrcene (79.77 %) followed by ethyl-cinnamate (40.14 %), β-curcumene (34.90 %), and alloaromadendrene (25.15 %) as the primary constituents of Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga and Curcuma aeruginosa, respectively. The Zingiberaceae oils were tested for their antibacterial activity against oral bacteria using the disc diffusion test. Curcuma xanthorrhiza oil showed the largest inhibition zones against Streptococcus mitis (19.50±2.22 mm) and Streptococcus sanguinis (15.04±3.05 mm). Similarly, Curcuma mangga oil exhibited significant antibacterial activity against Streptococcus mutans (12.55±0.45 mm) and mixed oral bacteria (15.03±3.82 mm). Furthermore, the MTT viability assay revealed moderate inhibitory activity of these essential oils against H103 and ORL-204 oral cancer cells. The study findings demonstrate that Curcuma xanthorrhiza and Curcuma mangga essential oils have potent antibacterial properties, suggesting their potential use as natural alternatives to synthetic antibacterial agents in oral care products. However, further investigations are necessary to fully explore their therapeutic applications.
    Matched MeSH terms: Zingiberaceae*
  4. Alafiatayo AA, Syahida A, Mahmood M
    PMID: 25371557
    BACKGROUND: Natural products such as herbs, fruits, spices, beverages, vegetables are becoming more popular among scientific community and consumers because of their potential to arrest the effect of free radicals in human system. This study determined the total antioxidant capacity of ten selected species of Zingiberaceae (Ginger) used as spices and for medicinal purposes in Southeast Asia.

    MATERIALS AND METHODS: Methanol was used as the extraction solvent, 2,2 - diphenyl-1-picrylhydrazil (DPPH) for free radical scavenging activity and ferric reducing antioxidant power (FRAP) assays. Phenolic compounds were measured using Total flavonoid, Phenolic acid and Polyphenols content assay to evaluate the quality of the antioxidant capacity of the rhizomes and vitamin C as positive control.

    RESULTS: The results obtained revealed that Curcuma longa and Zingiber officinale had the highest free radical scavenging capacity of 270.07mg/TE/g DW and 266.95mg/TE/g DW and FRAP assay, Curcuma longa and Zingiber officinale also gave the highest ferric reducing power of 231.73mg/TE/g DW and 176.26mg/TE/g DW respectively. For Phenolic compounds, Curcuma longa and Curcuma xanthorrhiza gave the highest values of flavonoid (741.36mg/NGN/g DW and 220.53mg/NGN/g DW), phenolic acid (42.71mg/GAE/g DW and 22.03mg/GAE/g DW) and polyphenols (39.38mg/GAE/g DW and 38.01mg/GAE/g DW) respectively. Significant and positive linear correlations were found between Total antioxidant capacity and Phenolic compounds (R = 0.65 - 0.96).

    CONCLUSION: This study provides evidence that extracts of Zingiberaceae (Ginger) rhizomes are a potential source of natural antioxidants and could serve as basis for future drugs and food supplements.

    Matched MeSH terms: Zingiberaceae/classification; Zingiberaceae/chemistry*
  5. Al-Amin M, Eltayeb NM, Hossain CF, Khairuddean M, Fazalul Rahiman SS, Salhimi SM
    Planta Med, 2020 Apr;86(6):387-394.
    PMID: 32168546 DOI: 10.1055/a-1129-7026
    Zingiber montanum rhizomes are traditionally used for the treatment of numerous human ailments. The present study was carried out to investigate the inhibitory activity of the crude extract, chromatographic fractions, and purified compounds from Z. montanum rhizomes on the migration of MDA-MB-231 cells. The effect of the extract on cell migration was investigated by a scratch assay, which showed significant inhibition in a concentration-dependent manner. Vacuum liquid chromatography on silica gel afforded four fractions (Frs. 1 - 4), which were tested on cell migration in the scratch assay. Frs. 1 and 2 showed the most significant inhibition of MDA-MB-231 cell migration. The effect of the most potent fraction (Fr. 2) was further confirmed in a transwell migration assay. The study of Frs. 1 and 2 by gelatin zymography showed significant inhibition of MMP-9 enzyme activity. Chromatographic separation of Frs. 1 and 2 afforded buddledone A (1: ), zerumbone (2: ), (2E,9E)-6-methoxy-2,9-humuradien-8-one (3: ), zerumbone epoxide (4: ), stigmasterol (5: ), and daucosterol (6: ). In a cell viability assay, compounds 1:  - 4: inhibited the viability of MDA-MB-231 cells in a concentration-dependent manner. The study of buddledone A (1: ) and zerumbone epoxide (4: ) on cell migration revealed that 4: significantly inhibited the migration of MDA-MB-231 cells in both scratch and transwell migration assays. The results of the present study may lead to further molecular studies behind the inhibitory activity of zerumbone epoxide (4: ) on cell migration and support the traditional use of Z. montanum rhizomes for the treatment of cancer.
    Matched MeSH terms: Zingiberaceae*
  6. Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, et al.
    Molecules, 2017 Dec 04;22(12).
    PMID: 29207520 DOI: 10.3390/molecules22122145
    Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
    Matched MeSH terms: Zingiberaceae/chemistry*
  7. Chan JSW, Lim XY, Japri N, Ahmad IF, Tan TYC
    Planta Med, 2024 Mar;90(3):204-218.
    PMID: 38035621 DOI: 10.1055/a-2219-9801
    Zingiber zerumbet, a plant native to tropical and subtropical Asia, has a vast range of traditional uses and has been continuously studied for its medicinal properties. However, a systematic methodological approach in evidence synthesis on the plant's efficacy is lacking, and there is a need to elicit the current research status of this plant. This scoping review was conducted to systematically explore and collate the available scientific evidence on the efficacy of Z. zerumbet and its main phytoconstituents in various formulations, their biological mechanisms, and their safety. Results included 54 articles consisting of animal studies, while there were no published human studies. Only half of the included studies provided adequate reporting on the quality-related details of Z. zerumbet formulations. Identified pharmacological activities were analgesic, anti-inflammatory, anti-diabetic, anti-hyperlipidemic, anti-neoplastic, immunomodulatory, antioxidant, antipyretic, hepatoprotective, nephroprotective, gastroprotective, and locomotor-reducing activities. Notably, the ethanolic extract of Z. zerumbet was found to be well tolerated for up to 28 days. In conclusion, Z. zerumbet and zerumbone have various pharmacological effects, especially in analgesic and anti-inflammatory models. However, there is still a pressing need for comprehensive safety data to conduct clinical trials.
    Matched MeSH terms: Zingiberaceae*
  8. Jani NA, Sirat MH, Ali NM, Aziz A
    Nat Prod Commun, 2013 Apr;8(4):513-4.
    PMID: 23738467
    The chemical compositions of the essential oil of the rhizome, leaf and stem of Hornstedtia leonurus Retz., collected from Negeri Sembilan, Malaysia,are reported for the first time. The essential oils were extracted using hydrodistillation and analyzed by gas chromatography (GC-FID) and gas chromatography/mass spectrometry (GC/MS). Seventeen (96.4%), thirteen (89.2%) and nine components (98.8%) were successfully identified from the rhizome, stem and leaf oils, respectively. Phenylpropanoids were found to be the major fraction, with methyleugenol being the most abundant compound in all oils with percentage compositions of 76.4% (rhizome), 80.3% (stem) and 74.5% (leaf).
    Matched MeSH terms: Zingiberaceae/chemistry*
  9. Tang SW, Sukari MA, Rahmani M, Lajis NH, Ali AM
    Molecules, 2011 Apr 07;16(4):3018-28.
    PMID: 21475124 DOI: 10.3390/molecules16043018
    A new abietene diterpene, kaempfolienol (5S,6S,7S,9S,10S,11R,13S-abiet-8(14)-enepenta-6,7,9,11,13-ol, 1), was isolated from a rhizome extract of Kaempferia angustifolia Rosc. along with the known compounds crotepoxide, boesenboxide, zeylenol, 2'-hydroxy-4,4',6'-trimethoxychalcone, (24S)-24-methyl-5α-lanosta-9(11),25-dien-3β-ol, β-sitosterol and β-sitosterol-3-O-β-D-glucopyranoside. The structures of all compounds were elucidated on the basis of mass spectroscopic and NMR data. Zeylenol (2), the major constituent of the plant, was derivatized into diacetate, triacetate and epoxide derivatives through standard organic reactions. The cytotoxic activity of compounds 1, 2 and the zeylenol derivatives was evaluated against the HL-60, MCF-7, HT-29 and HeLa cell lines.
    Matched MeSH terms: Zingiberaceae/chemistry*
  10. Zakaria ZA, Mohamad AS, Ahmad MS, Mokhtar AF, Israf DA, Lajis NH, et al.
    Biol Res Nurs, 2011 Oct;13(4):425-32.
    PMID: 21112917 DOI: 10.1177/1099800410386590
    Nonsteroidal anti-inflammatory drugs (NSAIDs) have been widely used for the treatment of inflammation. However, despite their effectiveness, most NSAIDs cause various side effects that negatively affect the management of inflammation and, in part, pain. Thus, there is a need to search for new anti-inflammatory agents with few, or no, side effects. Natural products of plant, animal, or microorganism origin have been good sources of new bioactive compounds. The present study was carried out to evaluate the acute and chronic anti-inflammatory activities of the essential oil of the rhizomes of Zingiber zerumbet (Zingiberaceae) using the carrageenan-induced paw edema and cotton pellet-induced granuloma tests, respectively. The effect of the essential oil on inflammatory- and noninflammatory-mediated pain was also assessed using the formalin test. Essential oil of Z. zerumbet, at doses of 30, 100, and 300 mg/kg, was administered intraperitoneally to rats. The substance exhibited significant anti-inflammatory activity both in acute and chronic animal models. The essential oil also inhibited inflammatory- and noninflammatory-mediated pain when assessed using the formalin test. In conclusion, the essential oil of Z. zerumbet possessed anti-inflammatory activity, in addition to its antinociceptive activity, which may explain its traditional uses to treat inflammatory-related ailments.
    Matched MeSH terms: Zingiberaceae/chemistry*
  11. Saokaew S, Wilairat P, Raktanyakan P, Dilokthornsakul P, Dhippayom T, Kongkaew C, et al.
    PMID: 27694558 DOI: 10.1177/2156587216669628
    Kaempferia parviflora (Krachaidum) is a medicinal plant in the family Zingiberaceae. Its rhizome has been used as folk medicine for many centuries. A number of pharmacological studies of Krachaidum had claimed benefits for various ailments. Therefore, this study aimed to systematically search and summarize the clinical evidences of Krachaidum in all identified indications. Of 683 records identified, 7 studies were included. From current clinical trials, Krachaidum showed positive benefits but remained inconclusive since small studies were included. Even though results found that Krachaidum significantly increased hand grip strength and enhanced sexual erotic stimuli, these were based on only 2 studies and 1 study, respectively. With regard to harmful effects, we found no adverse events reported even when Krachaidum 1.35 g/day was used. Therefore, future studies of Krachaidum are needed with regards to both safety and efficacy outcomes.
    Matched MeSH terms: Zingiberaceae*
  12. Mahawer S, Kumar R, Prakash O, Singh S, Singh Rawat D, Dubey SK, et al.
    Curr Top Med Chem, 2023;23(20):1964-1972.
    PMID: 37218200 DOI: 10.2174/1568026623666230522104104
    Alpinia malaccensis, commonly known as "Malacca ginger" and "Rankihiriya," is an important medicinal plant of Zingiberaceae. It is native to Indonesia and Malaysia and widely distributed in countries including Northeast India, China, Peninsular Malaysia and Java. Due to vide pharmacological values, it is necessary to recognize this species for its significance of pharmacological importance. This article provides the botanical characteristics, chemical compounds of vegetation, ethnopharmacological values, therapeutic properties, along with the potential pesticidal properties of this important medicinal plant. The information in this article was gathered by searching the online journals in the databases such as PubMed, Scopus, Web of Science etc. The terms such as Alpinia malaccensis, Malacca ginger, Rankihiriya, pharmacology, chemical composition, ethnopharmacology, etc., were used in different combinations. A detailed study of the available resources for A. malaccensis confirmed its native and distribution, traditional values, chemical properties, and medicinal values. Its essential oils and extracts are the reservoir of a wide range of important chemical constituents. Traditionally, it is being used to treat nausea, vomiting and wounds along with as a seasoning agent in meat processing and as perfume. Apart from traditional values, it has been reported for several pharmacological activities such as antioxidant, antimicrobial, anti-inflammatory etc. We believe that this review will help to provide the collective information of A. malaccensis to further explore it in the prevention and treatment of various diseases and help to the systematic study of this plant to utilize its potential in various areas of human welfare.
    Matched MeSH terms: Zingiberaceae*
  13. Chan EW, Wong SK
    J Integr Med, 2015 Nov;13(6):368-79.
    PMID: 26559362 DOI: 10.1016/S2095-4964(15)60208-4
    In this review, the phytochemistry and pharmacology of two ornamental gingers, Hedychium coronarium (butterfly ginger) and Alpinia purpurata (red ginger), are updated, and their botany and uses are described. Flowers of H. coronarium are large, showy, white, yellow or white with a yellow centre and highly fragrant. Inflorescences of A. purpurata are erect spikes with attractive red or pink bracts. Phytochemical investigations on the rhizomes of H. coronarium generated research interest globally. This resulted in the isolation of 53 labdane-type diterpenes, with little work done on the leaves and flowers. Pharmacological properties of H. coronarium included antioxidant, antibacterial, antifungal, cytotoxic, chemopreventive, anti-allergic, larvicidal, anthelminthic, analgesic, anti-inflammatory, anti-urolithiatic, anti-angiogenic, neuro-pharmacological, fibrinogenolytic, coagulant and hepatoprotective activities. On the contrary, little is known on the phytochemistry of A. purpurata with pharmacological properties of antioxidant, antibacterial, larvicidal, cytotoxic and vasodilator activities reported in the leaves and rhizomes. There is much disparity in terms of research effort within and between these two ornamental gingers.
    Matched MeSH terms: Zingiberaceae/chemistry*
  14. Khatir NM, Banihashemian SM, Periasamy V, Majid WH, Rahman SA, Shahhosseini F
    Sensors (Basel), 2011;11(7):6719-27.
    PMID: 22163981 DOI: 10.3390/s110706719
    A new patterning method using Deoxyribose Nucleic Acid (DNA) strands capable of producing nanogaps of less than 100 nm is proposed and investigated in this work. DNA strands from Bosenbergia rotunda were used as the fundamental element in patterning DNA on thin films of aluminium (Al) metal without the need for any lithographic techniques. The DNA strands were applied in buffer solutions onto thin films of Al on silicon (Si) and the chemical interactions between the DNA strands and Al creates nanometer scale arbitrary patterning by direct transfer of the DNA strands onto the substrate. This simple and cost-effective method can be utilized in the fabrication of various components in electronic chips for microelectronics and Nano Electronic Mechanical System (NEMS) applications in general.
    Matched MeSH terms: Zingiberaceae
  15. Mohammed Yahya Abdo, Wan Yaacob Wan Ahmad, Laily Bin Din, Nazlina Ibrahim
    Sains Malaysiana, 2017;46:83-89.
    A phytochemical study was conducted on the stems and leaves of Hedychium malayanum (Zingiberaceae). Three steroids
    namely stigmasterol (1), sitostenone (2) and stigmast-4-ene-3,6-dione (3) as well as one triterpene, lupenone (4) and
    one oxygenated sesquiterpene, caryophyllene oxide (5) were successfully isolated from the respective stems and leaves,
    utilizing several chromatographic techniques. Their structures were elucidated by spectroscopic means (IR, MS, NMR),
    and by comparison with the literature data.
    Matched MeSH terms: Zingiberaceae
  16. Yob NJ, Jofrry SM, Affandi MM, Teh LK, Salleh MZ, Zakaria ZA
    PMID: 21584247 DOI: 10.1155/2011/543216
    Zingiber zerumbet Sm., locally known to the Malay as "Lempoyang," is a perennial herb found in many tropical countries, including Malaysia. The rhizomes of Z. zerumbet, particularly, have been regularly used as food flavouring and appetizer in various Malays' cuisines while the rhizomes extracts have been used in Malay traditional medicine to treat various types of ailments (e.g., inflammatory- and pain-mediated diseases, worm infestation and diarrhea). Research carried out using different in vitro and in vivo assays of biological evaluation support most of these claims. The active pharmacological component of Z. zerumbet rhizomes most widely studied is zerumbone. This paper presents the botany, traditional uses, chemistry, and pharmacology of this medicinal plant.
    Matched MeSH terms: Zingiberaceae
  17. Jalil M, Annuar MS, Tan BC, Khalid N
    PMID: 25767555 DOI: 10.1155/2015/757514
    Zingiber zerumbet Smith is an important herb that contains bioactive phytomedicinal compound, zerumbone. To enhance cell growth and production of this useful compound, we investigated the growth conditions of cell suspension culture. Embryogenic callus generated from shoot bud was used to initiate cell suspension culture. The highest specific growth rate of cells was recorded when it was cultured in liquid Murashige and Skoog basal medium containing 3% sucrose with pH 5.7 and incubated under continuous shaking condition of 70 rpm for 16 h light and 8 h dark cycle at 24°C. Our results also revealed that the type of carbohydrate substrate, light regime, agitation speed, and incubation temperature could affect the production of zerumbone. Although the zerumbone produced in this study was not abundant compared to rhizome of Z. zerumbet, the possibility of producing zerumbone during early stage could serve as a model for subsequent improvement.
    Matched MeSH terms: Zingiberaceae
  18. Chan EW, Lim YY, Tan SP
    Pharmacognosy Res, 2011 Jul;3(3):178-84.
    PMID: 22022166 DOI: 10.4103/0974-8490.85003
    Chlorogenic acid (CGA) or 5-caffeoylquinic acid, was found to be the dominant phenolic compound in leaves of Etlingera elatior (Zingiberaceae). The CGA content of E. elatior leaves was significantly higher than flowers of Lonicera japonica (honeysuckle), the commercial source. In this study, a protocol to produce a standardised herbal CGA extract from leaves of E. elatior using column chromatography was developed.
    Matched MeSH terms: Zingiberaceae
  19. Habsah M, Ali A, Lajis N, Sukari M, Yap Y, Kikuzaki H, et al.
    Malays J Med Sci, 2005 Jan;12(1):6-12.
    PMID: 22605941
    Phytochemical studies on rhizome of Etlingera elatior have resulted in the isolation of 1,7-bis(4-hydroxyphenyl)-2,4,6-heptatrienone (1), demethoxycurcumin (2), 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (3), 16-hydroxylabda-8(17),11,13-trien-16,15-olide (4), stigmast-4-en-3-one (5), stigmast-4-ene-3,6-dione (6), stigmast-4-en-6b-ol-3-one (7), 5α,8α-epidioxyergosta-6,22-dien-3β-ol (8). 1 and 4 were new compounds. Compounds 5 and 7 displayed high antitumour-promoting activity. Ethyl acetate extract showed a very significant cytotoxic activity against CEM-SS and MCF-7 cell lines (4 μg/ml and 6.25 μg/ml respectively). The antitumour-promoting activity was determined by EBV-EA assay and cytotoxic activity was determined by MTT assay.
    Matched MeSH terms: Zingiberaceae
  20. Ghasemzadeh A, Jaafar HZ, Ashkani S, Rahmat A, Juraimi AS, Puteh A, et al.
    BMC Complement Altern Med, 2016 Mar 22;16:104.
    PMID: 27004511 DOI: 10.1186/s12906-016-1072-6
    Zingiber zerumbet (L.) is a traditional Malaysian folk remedy that contains several interesting bioactive compounds of pharmaceutical quality.
    Matched MeSH terms: Zingiberaceae/growth & development; Zingiberaceae/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links