Displaying all 3 publications

Abstract:
Sort:
  1. Liew JWK, Selvarajoo S, Tan W, Ahmad Zaki R, Vythilingam I
    Infect Dis Poverty, 2019 Sep 03;8(1):71.
    PMID: 31477185 DOI: 10.1186/s40249-019-0584-y
    BACKGROUND: Dengue is a global disease, transmitted by the Aedes vectors. In 2018, there were 80 615 dengue cases with 147 deaths in Malaysia. Currently, the nationwide surveillance programs are dependent on Aedes larval surveys and notifications of lab-confirmed human infections. The existing, reactive programs appear to lack sensitivity and proactivity. More efficient dengue vector surveillance/control methods are needed.

    METHODS: A parallel, cluster, randomized controlled, interventional trial is being conducted for 18 months in Damansara Damai, Selangor, Malaysia, to determine the efficacy of using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test for early surveillance of dengue among Aedes mosquitoes to reduce dengue outbreaks. Eight residential apartments were randomly assigned into intervention and control arms. GOS traps are set at the apartments to collect Aedes weekly, following which dengue NS1 antigen is detected in these mosquitoes. When a dengue-positive mosquito is detected, the community will be advised to execute vector search-and-destroy and protective measures. The primary outcome concerns the the percentage change in the (i) number of dengue cases and (ii) durations of dengue outbreaks. Whereas other outcome measures include the change in density threshold of Aedes and changes in dengue-related knowledge, attitude and practice among cluster inhabitants.

    DISCUSSION: This is a proactive and early dengue surveillance in the mosquito vector that does not rely on notification of dengue cases. Surveillance using the GOS traps should be able to efficiently provide sufficient coverage for multistorey dwellings where population per unit area is likely to be higher. Furthermore, trapping dengue-infected mosquitoes using the GOS trap, helps to halt the dengue transmission carried by the mosquito. It is envisaged that the results of this randomized controlled trial will provide a new proactive, cheap and targeted surveillance tool for the prevention and control of dengue outbreaks.

    TRIAL REGISTRATION: This is a parallel-cluster, randomized controlled, interventional trial, registered at ClinicalTrials.gov (ID: NCT03799237), on 8th January 2019 (retrospectively registered).

    Matched MeSH terms: Viral Nonstructural Proteins/analysis*
  2. Liew JWK, Selvarajoo S, Phang WK, Mah Hassan M, Redzuan MS, Selva Kumar S, et al.
    Acta Trop, 2021 Apr;216:105829.
    PMID: 33465350 DOI: 10.1016/j.actatropica.2021.105829
    The aim of this study is to investigate the feasibility and outcomes of using Gravid Oviposition Sticky (GOS) trap and dengue NS1 antigen tests for indoor and outdoor dengue/Aedes surveillance in the field. A one-year community-based study was carried out at Sungai Buloh Hospital Quarters, Selangor, Malaysia. GOS traps were first placed outdoors in three apartment blocks (Anggerik, Bunga Raya and Mawar). Beginning 29th week of the study, indoor traps were set in two apartment units on every floor in Anggerik. All female Aedes mosquitoes caught were tested for the presence of dengue NS1 antigen. Dengue seroprevalence and knowledge, attitude and practices on dengue prevention of the community and their reception to the surveillance approach were also assessed. Dengue-positive mosquitoes were detected at least 1 week before a dengue onset. More mosquitoes were caught indoors than outdoors in block Anggerik, but the total number of mosquitoes caught in all 3 blocks were similar. There was a significant difference in distribution of Ae. aegypti and Ae. albopictus between the 3 blocks. 66.1% and 3.4% of the community were positive for dengue IgG and IgM, respectively. Most respondents think that this surveillance method is Good (89%) and support its use nationwide. Dengue case ratio in the study apartment blocks decreased from year 2018 to 2019. This study demonstrated the practicality of performing proactive dengue/Aedes surveillance inside apartment units using the GOS traps. This surveillance method can be performed with immediate result output in the field.
    Matched MeSH terms: Viral Nonstructural Proteins/analysis*
  3. Lau SM, Chua TH, Sulaiman WY, Joanne S, Lim YA, Sekaran SD, et al.
    Parasit Vectors, 2017 Mar 21;10(1):151.
    PMID: 28327173 DOI: 10.1186/s13071-017-2091-y
    BACKGROUND: Dengue remains a serious public health problem in Southeast Asia and has increased 37-fold in Malaysia compared to decades ago. New strategies are urgently needed for early detection and control of dengue epidemics.

    METHODS: We conducted a two year study in a high human density dengue-endemic urban area in Selangor, where Gravid Ovipositing Sticky (GOS) traps were set up to capture adult Aedes spp. mosquitoes. All Aedes mosquitoes were tested using the NS1 dengue antigen test kit. All dengue cases from the study site notified to the State Health Department were recorded. Weekly microclimatic temperature, relative humidity (RH) and rainfall were monitored.

    RESULTS: Aedes aegypti was the predominant mosquito (95.6%) caught in GOS traps and 23% (43/187 pools of 5 mosquitoes each) were found to be positive for dengue using the NS1 antigen kit. Confirmed cases of dengue were observed with a lag of one week after positive Ae. aegypti were detected. Aedes aegypti density as analysed by distributed lag non-linear models, will increase lag of 2-3 weeks for temperature increase from 28 to 30 °C; and lag of three weeks for increased rainfall.

    CONCLUSION: Proactive strategy is needed for dengue vector surveillance programme. One method would be to use the GOS trap which is simple to setup, cost effective (below USD 1 per trap) and environmental friendly (i.e. use recyclable plastic materials) to capture Ae. aegypti followed by a rapid method of detecting of dengue virus using the NS1 dengue antigen kit. Control measures should be initiated when positive mosquitoes are detected.

    Matched MeSH terms: Viral Nonstructural Proteins/analysis*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links