METHODS: MEDLINE and Embase databases were searched from inception up to September 2019 to identify all studies that compared the predictive performance of cystatin C- and/or creatinine-based eGFR in predicting the clearance of vancomycin. The prediction errors (PEs) (the value of eGFR equations minus vancomycin clearance) were quantified for each equation and were pooled using a random-effects model. The root mean squared errors were also quantified to provide a metric for imprecision.
RESULTS: This meta-analysis included evaluations of seven different cystatin C- and creatinine-based eGFR equations in total from 26 studies and 1,234 patients. The mean PE (MPE) for cystatin C-based eGFR was 4.378 mL min-1 (95% confidence interval [CI], -29.425, 38.181), while the creatinine-based eGFR provided an MPE of 27.617 mL min-1 (95% CI, 8.675, 46.560) in predicting clearance of vancomycin. This indicates the presence of unbiased results in vancomycin clearance prediction by the cystatin C-based eGFR equations. Meanwhile, creatinine-based eGFR equations demonstrated a statistically significant positive bias in vancomycin clearance prediction.
CONCLUSION: Cystatin C-based eGFR equations are better than creatinine-based eGFR equations in predicting the clearance of vancomycin. This suggests that utilising cystatin C-based eGFR equations could result in better accuracy and precision to predict vancomycin pharmacokinetic parameters.
OBJECTIVE: The aim of this proof-of-concept study was to evaluate whether combining population pharmacokinetic and machine learning approaches could provide a more accurate prediction of the clearance of renally eliminated drugs in individual neonates.
METHODS: Six drugs that are primarily eliminated by the kidneys were selected (vancomycin, latamoxef, cefepime, azlocillin, ceftazidime, and amoxicillin) as 'proof of concept' compounds. Individual estimates of clearance obtained from population pharmacokinetic models were used as reference clearances, and diverse machine learning methods and nested cross-validation were adopted and evaluated against these reference clearances. The predictive performance of these combined methods was compared with the performance of two other predictive methods: a covariate-based maturation model and a postmenstrual age and body weight scaling model. Relative error was used to evaluate the different methods.
RESULTS: The extra tree regressor was selected as the best-fit machine learning method. Using the combined method, more than 95% of predictions for all six drugs had a relative error of < 50% and the mean relative error was reduced by an average of 44.3% and 71.3% compared with the other two predictive methods.
CONCLUSION: A combined population pharmacokinetic and machine learning approach provided improved predictions of individual clearances of renally cleared drugs in neonates. For a new patient treated in clinical practice, individual clearance can be predicted a priori using our model code combined with demographic data.
METHODS: A pooled population-pharmacokinetic model was built in NONMEM based on data from 14 different studies in different patient populations. Steady-state exposure was simulated and compared across patient subgroups for two US Food and Drug Administration/European Medicines Agency-approved drug labels and optimised doses were derived.
RESULTS: The final model uses postmenstrual age, weight and serum creatinine as covariates. A 35-year-old, 70-kg patient with a serum creatinine level of 0.83 mg dL-1 (73.4 µmol L-1) has a V1, V2, CL and Q2 of 42.9 L, 41.7 L, 4.10 L h-1 and 3.22 L h-1. Clearance matures with age, reaching 50% of the maximal value (5.31 L h-1 70 kg-1) at 46.4 weeks postmenstrual age then declines with age to 50% at 61.6 years. Current dosing guidelines failed to achieve satisfactory steady-state exposure across patient subgroups. After optimisation, increased doses for the Food and Drug Administration label achieve consistent target attainment with minimal (± 20%) risk of under- and over-dosing across patient subgroups.
CONCLUSIONS: A population model was developed that is useful for further development of age and kidney function-stratified dosing regimens of vancomycin and for individualisation of treatment through therapeutic drug monitoring and Bayesian forecasting.
METHODS: A 'meta-model' with 4894 concentrations from 1631 neonates was built using NONMEM, and Monte Carlo simulations were performed to design an optimal intermittent infusion, aiming to reach a target AUC0-24 of 400 mg·h/L at steady-state in at least 80% of neonates.
RESULTS: A two-compartment model best fitted the data. Current weight, postmenstrual age (PMA) and serum creatinine were the significant covariates for CL. After model validation, simulations showed that a loading dose (25 mg/kg) and a maintenance dose (15 mg/kg q12h if <35 weeks PMA and 15 mg/kg q8h if ≥35 weeks PMA) achieved the AUC0-24 target earlier than a standard 'Blue Book' dosage regimen in >89% of the treated patients.
CONCLUSIONS: The results of a population meta-analysis of vancomycin data have been used to develop a new dosing regimen for neonatal use and to assist in the design of the model-based, multinational European trial, NeoVanc.