Displaying all 13 publications

Abstract:
Sort:
  1. Norizzah AR, Nur Azimah K, Zaliha O
    Food Res Int, 2018 04;106:982-991.
    PMID: 29580013 DOI: 10.1016/j.foodres.2018.02.001
    Interesterification reaction involves rearrangement of the fatty acid radicals on the glycerol backbone, either randomly (chemical interesterification) or regioselectivity (enzymatic interesterification). Refined, bleached and deodourised palm oil (RBDPO) and palm kernel oil (RBDPKO) were blended in ratios from 25:75 to 75:25 (wt/wt). All blends were subjected to enzymatic (EI) and chemical interesterification (CI) using Lipozyme TL IM (4% w/w) and sodium methoxide (0.2% m/m) as the catalysts, respectively. The effect of EI and CI on the triacylglycerol (TAG) composition, thermal behaviour, polymorphism, crystal morphology and crystallisation kinetics were studied. The aim of this research is to characterise the nature of crystals in food product for certain desired structure. The crystallisation behaviour discussed in this study involves microstructure (PLM), polymorphism (XRD), thermal properties and crystallisation kinetics by DSC. The alteration in TAG composition was greater after CI as compared to EI with the reduction of LaLaLa (from 11.00% to 5.15%) and POO (from 14.28% to 4.87%). The DSC complete melting and crystallisation temperature of blend with 75% PO increased after CI, from 39.58 °C to 41.67 °C and from -30.84 °C to -28.33 °C, respectively. EI contributed to finer crystals than CI. However, the β' and β polymorph mixture and crystallisation kinetics (n = 2) of PO-PKO blends did not change after CI and EI. The knowledge on controlling crystallisation of RBDPO and RBDPKO blends is vital for proper processing condition like margarine production.
    Matched MeSH terms: Triglycerides/analysis
  2. Ping BTY, Aziz HA, Idris Z
    J Oleo Sci, 2018;67(3):265-272.
    PMID: 29491321 DOI: 10.5650/jos.ess17164
    High-Performance Liquid Chromatography (HPLC) methods via evaporative light scattering (ELS) and refractive index (RI) detectors are used by the local palm oil industry to monitor the TAG profiles of palm oil and its fractions. The quantitation method used is based on area normalization of the TAG components and expressed as percentage area. Although not frequently used, peak-area ratios based on TAG profiles are a possible qualitative method for characterizing the TAG of palm oil and its fractions. This paper aims to compare these two detectors in terms of peak-area ratio, percentage peak area composition, and TAG elution profiles. The triacylglycerol (TAG) composition for palm oil and its fractions were analysed under similar HPLC conditions i.e. mobile phase and column. However, different sample concentrations were used for the detectors while remaining within the linearity limits of the detectors. These concentrations also gave a good baseline resolved separation for all the TAGs components. The results of the ELSD method's percentage area composition for the TAGs of palm oil and its fractions differed from those of RID. This indicates an unequal response of TAGs for palm oil and its fractions using the ELSD, also affecting the peak area ratios. They were found not to be equivalent to those obtained using the HPLC-RID. The ELSD method showed a better baseline separation for the TAGs components, with a more stable baseline as compared with the corresponding HPLC-RID. In conclusion, the percentage area compositions and peak-area ratios for palm oil and its fractions as derived from HPLC-ELSD and RID were not equivalent due to different responses of TAG components to the ELSD detector. The HPLC-RID has a better accuracy for percentage area composition and peak-area ratio because the TAG components response equally to the detector.
    Matched MeSH terms: Triglycerides/analysis*
  3. Marikkar JM, Rana S
    J Oleo Sci, 2014;63(9):867-73.
    PMID: 25174673
    A study was conducted to detect and quantify lard stearin (LS) content in canola oil (CaO) using differential scanning calorimetry (DSC). Authentic samples of CaO were obtained from a reliable supplier and the adulterant LS were obtained through a fractional crystallization procedure as reported previously. Pure CaO samples spiked with LS in levels ranging from 5 to 15% (w/w) were analyzed using DSC to obtain their cooling and heating profiles. The results showed that samples contaminated with LS at 5% (w/w) level can be detected using characteristic contaminant peaks appearing in the higher temperature regions (0 to 70°C) of the cooling and heating curves. Pearson correlation analysis of LS content against individual DSC parameters of the adulterant peak namely peak temperature, peak area, peak onset temperature indicated that there were strong correlations between these with the LS content of the CaO admixtures. When these three parameters were engaged as variables in the execution of the stepwise regression procedure, predictive models for determination of LS content in CaO were obtained. The predictive models obtained with single DSC parameter had relatively lower coefficient of determination (R(2) value) and higher standard error than the models obtained using two DSC parameters in combination. This study concluded that the predictive models obtained with peak area and peak onset temperature of the adulteration peak would be more accurate for prediction of LS content in CaO based on the highest coefficient of determination (R(2) value) and smallest standard error.
    Matched MeSH terms: Triglycerides/analysis*
  4. Manaf YN, Marikkar JM, Long K, Ghazali HM
    J Oleo Sci, 2013;62(6):335-43.
    PMID: 23728324
    The seeds (6.9±0.2% by weight of fruit) of the red-skin rambutan (Nephelium lappaceum L.) contain a considerable amount of crude fat (38.0±4.36%) and thus, the aim of the study was to determine the physico-chemical properties of this fat for potential applications. The iodine and saponification values, and unsaponifiable matter and free fatty acid contents of the seed fat were 50.27 g I2/100g fat, 182.1 mg KOH/g fat, 0.8% and 2.1%, respectively. The fat is pale yellow with a Lovibond color index of 3.1Y+1.1R. The fatty acid profile indicates an almost equal proportion of saturated (49.1%) and unsaturated (50.9%) fatty acids, where oleic (42.0%) and arachidic (34.3%) acids were the most dominant fatty acids. It also contained small amounts of stearic (8.0%), palmitic (4.6%), gadoleic (5.9%), linoleic (2.2%), behenic (2.1%) palmitoleic (0.7%) myristic (0.1%) and erucic (0.1%) acids. HPLC analysis showed that the fat comprised mainly unknown triacylglycerols (TAG) with high retention times indicating they have higher carbon numbers compared with many vegetable oils. The fat has melting and cooling points of 44.2°C and -42.5°C, respectively, making it a semi-solid at room temperature. The solid content at 0°C was 53.5% and the fat melted completely at 40°C. z-Nose analysis showed that the presence of high levels of volatile compounds in red-skin rambutan seed and seed fat.
    Matched MeSH terms: Triglycerides/analysis
  5. Saadi S, Ariffin AA, Ghazali HM, Miskandar MS, Abdulkarim SM, Boo HC
    J Food Sci, 2011 Jan-Feb;76(1):C21-30.
    PMID: 21535649 DOI: 10.1111/j.1750-3841.2010.01922.x
    The ability of palm oil (PO) to crystallize as beta prime polymorph has made it an attractive option for the production of margarine fat (MF). Palm stearin (PS) expresses similar crystallization behavior and is considered one of the best substitutes of hydrogenated oils due to its capability to impart the required level of plasticity and body to the finished product. Normally, PS is blended with PO to reduce the melting point at body temperature (37 °C). Lipid phase, formulated by PO and PS in different ratios were subjected to an emulsification process and the following analyses were done: triacylglycerols, solid fat content (SFC), and thermal behavior. In addition, the microstructure properties, including size and number of crystals, were determined for experimental MFs (EMFs) and commercial MFs (CMFs). Results showed that blending and emulsification at PS levels over 40 wt% significantly changed the physicochemical and microstructure properties of EMF as compared to CMF, resulting in a desirable dipalmitoyl-oleoyl-glycerol content of less than 36.1%. SFC at 37 °C, crystal size, crystal number, crystallization, and melting enthalpies (ΔH) were 15%, 5.37 μm, 1425 crystal/μm(2), 17.25 J/g, and 57.69J/g, respectively. All data reported indicate that the formation of granular crystals in MFs was dominated by high-melting triacylglycerol namely dipalmitoyl-oleoyl-glycerol, while the small dose of monoacylglycerol that is used as emulsifier slowed crystallization rate. Practical Application: Most of the past studies were focused on thermal behavior of edible oils and some blends of oils and fats. The crystallization of oils and fats are well documented but there is scarce information concerning some mechanism related to crystallization and emulsification. Therefore, this study will help to gather information on the behavior of emulsifier on crystallization regime; also the dominating TAG responsible for primary granular crystal formations, as well as to determine the best level of stearin to impart the required microstructure properties and body to the finished products.
    Matched MeSH terms: Triglycerides/analysis
  6. Ramli MR, Siew WL, Cheah KY
    J Food Sci, 2008 Apr;73(3):C140-5.
    PMID: 18387090 DOI: 10.1111/j.1750-3841.2007.00657.x
    High-oleic palm oil (HOPO) with an oleic acid content of 59.0% and an iodine value (IV) of 78.2 was crystallized in a 200-kg De Smet crystallizer with a predetermined cooling program and appropriate agitation. The slurry was then fractionated by means of dry fractionation at 4, 8, 10, 12, and 15 degrees C. The oil and the fractionated products were subjected to physical and chemical analyses, including fatty acid composition, triacylglycerol and diacylglycerol composition, solid fat content, cloud point, slip melting point, and cold stability test. Fractionation at 15 degrees C resulted in the highest olein yield but with minimal oleic acid content. Due to the enhanced unsaturation of the oil, fractionation at relatively lower crystallization temperature showed a considerable effect on fatty acid composition as well as triacylglycerol and diacylglycerol composition of liquid fractions compared to higher crystallization temperature. The olein and stearin fractionated at 4 degrees C had the best cold stability at 0 degrees C and sharper melting profile, respectively.
    Matched MeSH terms: Triglycerides/analysis*
  7. Jinap S, Ali AA, Man YB, Suria AM
    Int J Food Sci Nutr, 2000 Nov;51(6):489-99.
    PMID: 11271851
    Dark chocolates filled with palm mid-fraction (PMF) were stored at different temperatures to evaluate the physical and chemical changes. Storage at low temperature (18 degrees C) reduces the PMF migration to negligible extent. Higher storage temperatures (30 and 35 degrees C) increased the PMF migration from the filling centre into the chocolate coating. As a consequence of fat migration, fatty acid composition, triglyceride composition, hardness, solid fat content, melting point and polymorphic structure changed, leading to bloom formation, which started by fat migration and was influenced by recrystallization tendency within the chocolate coating.
    Matched MeSH terms: Triglycerides/analysis
  8. Md Ali AR
    Int J Food Sci Nutr, 1996 Jan;47(1):15-22.
    PMID: 8616668
    Two types of palm oil and sal fat based cocoa butter equivalents, namely fCBE (produced by using co-fractionation method) and mCBE (produced by using conventional method) were prepared. Results showed that the fCBE had triglyceride composition and solidification characteristics closer to the Malaysian cocoa butter than the mCBE produced at the same yield percentage. Increasing acetone washing time had little effect on the fCBE if compared to the effect of increasing palm olein to sal fat blend ratio. Co-fractionation technique increase the compatibility between CBE component triglycerides. Thus, more palm oil can be incorporated in the preparation and the process can be carried out at not low temperature as compared to the conventional method.
    Matched MeSH terms: Triglycerides/analysis
  9. Illiyin MR, Marikkar JM, Loke MK, Shuhaimi M, Mahiran B, Miskandar MS
    J Oleo Sci, 2014;63(1):39-46.
    PMID: 24389796
    A study was carried out to compare the composition and thermal properties of lard (LD) and engkabang fat (EF) - canola oil (CaO) blend interesterified with Candida antartica lipase (C. antartica). A fat blend EF-4 (40% EF in CaO) was prepared and interesterified using C. antartica lipase at 60°C for different time intervals (6 h, 12 h and 24 h) with 200 rpm agitation. The fat blends before and after interesterification were compared to LD with respect to their slip melting points (SMP), fatty acid and triacyglycerol (TAG) compositions, melting, solidification and polymorphic properties. Result showed that the slip melting point (SMP) of the fat blend interesterified for 6 h was the closest to that of LD. The solid fat content (SFC) values of fat blends interesterified for 12 and 24 h were found to become equal to those of LD within the temperature range of 0 to 20°C. In addition, all three interesterified blends had SFC values similar to those of LD within the temperature range of 30-40°C. According to thermal analysis, the transition of the fat blend interesterified for 24 h appearing at -2.39°C was similar to the low melting thermal transition of LD and the transition of the fat blend interesterified for 12 h appearing at 26.25°C was similar to the high melting thermal transition of LD. However, there is no compatibility between LD and all three interesterified blends with regard to polymorphic behaviour.
    Matched MeSH terms: Triglycerides/analysis
  10. Yanty NA, Marikkar JM, Man YB, Long K
    J Oleo Sci, 2011;60(7):333-8.
    PMID: 21701095
    Lard being an edible fat could be used in different forms in food systems. In this study, composition and thermal analysis of lard stearin (LS) and lard olein (LO) were undertaken to determine some common parameters which would enable their detection in food. A sample of native lard was partitioned into LS and LO using acetone as solvent and the fractions were compared to the original sample with respect to basic physico-chemical parameters, fatty acid and triacylglycerol (TAG) composition, and thermal characteristics. Although LS and LO displayed wider variations in basic physico-chemical parameters, thermal properties and solidification behavior, they do possess some common characteristic features with regard to composition. In spite of the proportional differences in the major fatty acids, both LS and LO are found to possess extremely high amount of palmitic (C16:0) acid at the sn-2 positions of their TAG molecules. Similar to native lard, both LS and LO contained approximately equal proportions of TAG molecules namely, linoleoyl-palmitoyl-oleoyl glycerol (LPO) and dioleoyl-palmitoyl glycerol (OPO). Hence, the calculated LPO/OPO ratio for LS and LO are comparably similar to that of native lard.
    Matched MeSH terms: Triglycerides/analysis*
  11. Nodeh HR, Rashidi L, Gabris MA, Gholami Z, Shahabuddin S, Sridewi N
    J Oleo Sci, 2020 Nov 01;69(11):1359-1366.
    PMID: 33055442 DOI: 10.5650/jos.ess20128
    For the very first time, the nutritional and physicochemical properties of the oil extracted from hackberry Celtis australis fruit were investigated with the aim of possible applications of such wild fruit oil. The physicochemical properties such as peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were examined extensively. The obtained results showed that peroxide value, acidity, saponification, iodine value and total fat content of the extracted oil were found to be 4.9 meq O2/kg fat, 0.9 mg KOH/g fat, 193.6 mg KOH/g fat, 141.52 mg I2/g fat and ~5%, respectively. The predominant fatty acid found in this wild fruit is linoleic acid which was calculated to be 73.38%±1.24. In addition, gamma-tocopherol (87%) and β-sitosterol (81.2%±1.08) were the major tocopherol and sterol compositions found in Celtis australis seed oil. Moreover, equivalent carbon number (ECN) analysis has indicated that the three linoleic acids are the main composition of the triacylglycerols extracted from Celtis australis. Also, the high value of omega 6 and β-sitosterol make this oil applicable in cosmetics and pharmaceutical applications.
    Matched MeSH terms: Triglycerides/analysis*
  12. Chai KF, Adzahan NM, Karim R, Rukayadi Y, Ghazali HM
    Food Chem, 2019 Feb 15;274:808-815.
    PMID: 30373014 DOI: 10.1016/j.foodchem.2018.09.065
    Rambutan seed is usually discarded during fruit processing. However, the seed contains a considerable amount of crude fat. Hence, the objective of this study was to investigate the fat properties and antinutrient content of the seed during fermentation of rambutan fruit. Results showed that the crude fat content of the seed reduced by 22% while its free fatty acid content increased by 4.3 folds after 10 days of fermentation. Arachidic acid was selectively reduced and was replaced by linoleic acid from the seventh day of fermentation onwards. Only 14.5% of triacylglycerol remained in the seed fat at the end of fermentation. The complete melting temperature, crystallization onset temperature and solid fat index at 37 °C of the fermented seed fat were higher than that of non-fermented seed fat. The saponin and tannin contents of the seed were reduced by 67% and 47%, respectively, after fermentation.
    Matched MeSH terms: Triglycerides/analysis
  13. Gouk SW, Cheng SF, Ong AS, Chuah CH
    Br J Nutr, 2014 Apr 14;111(7):1174-80.
    PMID: 24286356 DOI: 10.1017/S0007114513003668
    In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16:0) and stearic acid (18:0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16:0, 18:0 and 18:1, whilst the sn-2 position was preserved with 18:1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA-unsaturated fatty acid-SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.
    Matched MeSH terms: Triglycerides/analysis
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links