Although a substantial body of evidence suggests that large and old trees have reduced metabolic levels, the search for the causes behind this observation has proved elusive. The strong coupling between age and size, commonly encountered in the field, precludes the isolation of the potential causes. We used standard propagation techniques (grafting and air-layering) to decouple the effects of size from those of age in affecting leaf structure, biochemistry and physiology of two broadleaved trees, Acer pseudoplatanus (a diffuse-porous species) and Fraxinus excelsior (a ring-porous species). The first year after establishment of the propagated plants, some of the measurements suggested the presence of age-related declines in metabolism, while other measurements either did not show any difference or suggested variability across treatments not associated with either age or size. During the second year after establishment, only one of the measured properties (specific leaf area) continued to show some evidence of an age-mediated decline (although much reduced compared to the field), whereas, for some properties (particularly for F. excelsior), even the opposite trend of age-related increases was apparent. We concluded that (1) our plants suffered from grafting shock during year 1 and they gradually recovered during year 2; (2) the results over 2 years do not support the statement that age directly mediates ageing in either species but instead suggest that size directly mediates ageing processes; and (3) neither shoots nor roots of A. pseudoplatanus showed any evidence of senescence.
In South-East Asian dipterocarp forests, many trees synchronize their reproduction at the community level, but irregularly, in a phenomenon known as general flowering (GF). Several proximate cues have been proposed as triggers for the synchronization of Southeast Asian GF, but the debate continues, as many studies have not considered geographical variation in climate and flora. We hypothesized that the spatial pattern of GF forests is explained by previously proposed climatic cues if there are common cues for GF among regions. During the study, GF episodes occurred every year, but the spatial occurrence varied considerably from just a few forests to the whole of Peninsular Malaysia. In 2001, 2002 and 2005, minor and major GF occurred widely throughout Peninsular Malaysia (GF2001, GF2002, and GF2005), and the geographical patterns of GF varied between the episodes. In the three regional-scale GF episodes, most major events occurred in regions where prolonged drought (PD) had been recorded prior, and significant associations between GF scores and PD were found in GF2001 and GF2002. However, the frequency of PD was higher than that of GF throughout the peninsula. In contrast, low temperature (LT) was observed during the study period only before GF2002 and GF2005, but there was no clear spatial relationship between GF and LT in the regional-scale episodes. There was also no evidence that last GF condition influenced the magnitude of GF. Thus, our results suggest that PD would be essential to trigger regional-scale GF in the peninsula, but also that PD does not fully explain the spatial and temporal patterns of GF. The coarse relationships between GF and the proposed climatic cues may be due to the geographical variation in proximate cues for GF, and the climatic and floristic geographical variations should be considered to understand the proximate factors of GF.
Tree species of Eurasian broadleaved forest possess two divergent trait syndromes with contrasting patterns of resource allocation adapted to different selection environments: short-stature basal resprouters that divert resources to a bud bank adapted to frequent and severe disturbances such as fire and herbivory, and tall trees that delay reproduction by investing in rapid height growth to escape shading. Drawing on theory developed in savanna ecosystems, we propose a conceptual framework showing that the possession of contrasting trait syndromes is essential for the persistence of broadleaved trees in an open ecosystem that burns. Consistent with this hypothesis, trees of modern Eurasian broadleaved forest bear a suite of traits that are adaptive to surface and crown-fire regimes. We contend that limited opportunities in grassland restricts recruitment to disturbance-free refugia, and en masse establishment creates a wooded environment where shade limits the growth of light-demanding savanna plants. Rapid height growth, which involves investment in structural support and the switch from a multi-stemmed to a monopodial growth form, is adaptive in this shaded environment. Although clustering reduces surface fuel loads, these establishment nuclei are vulnerable to high-intensity crown fires. The lethal effects of canopy fire are avoided by seasonal leaf shedding, and aerial resprouting enhances rapid post-fire recovery of photosynthetic capacity. While these woody formations satisfy the structural definition of forest, their constituents are clearly derived from savanna. Contrasting trait syndromes thus represent the shift from consumer to resource regulation in savanna ecosystems. Consistent with global trends, the diversification of most contemporary broadleaved taxa coincided with the spread of grasslands, a surge in fire activity and a decline in wooded ecosystems in the late Miocene-Pliocene. Recognition that Eurasian broadleaved forest has savanna origins and persists as an alternative state with adjacent grassy ecosystems has far-reaching management implications in accordance with functional rather than structural criteria. Shade is a severe constraint to the regeneration and growth of both woody and herbaceous growth forms in consumer-regulated ecosystems. However, these ecosystems are highly resilient to disturbance, an essential process that maintains diversity especially among the species-rich herbaceous component that is vulnerable to shading when consumer behaviour is altered.
Time-series data offer a way of investigating the causes driving ecological processes as phenomena. To test for possible differences in water relations between species of different forest structural guilds at Danum (Sabah, NE Borneo), daily stem girth increments (gthi), of 18 trees across six species were regressed individually on soil moisture potential (SMP) and temperature (TEMP), accounting for temporal autocorrelation (in GLS-arima models), and compared between a wet and a dry period. The best-fitting significant variables were SMP the day before and TEMP the same day. The first resulted in a mix of positive and negative coefficients, the second largely positive ones. An adjustment for dry-period showers was applied. Interactions were stronger in dry than wet period. Negative relationships for overstorey trees can be interpreted in a reversed causal sense: fast transporting stems depleted soil water and lowered SMP. Positive relationships for understorey trees meant they took up most water at high SMP. The unexpected negative relationships for these small trees may have been due to their roots accessing deeper water supplies (if SMP was inversely related to that of the surface layer), and this was influenced by competition with larger neighbour trees. A tree-soil flux dynamics manifold may have been operating. Patterns of mean diurnal girth variation were more consistent among species, and time-series coefficients were negatively related to their maxima. Expected differences in response to SMP in the wet and dry periods did not clearly support a previous hypothesis differentiating drought and non-drought tolerant understorey guilds. Trees within species showed highly individual responses when tree size was standardized. Data on individual root systems and SMP at several depths are needed to get closer to the mechanisms that underlie the tree-soil water phenomena in these tropical forests. Neighborhood stochasticity importantly creates varying local environments experienced by individual trees.
Differences in the density of conspecific tree individuals in response to environmental gradients are well documented for many tree species, but how such density differences are generated and maintained is poorly understood. We examined the segregation of six dipterocarp species among three soil types in the Pasoh tropical forest, Malaysia. We examined how individual performance and population dynamics changed across the soil types using 10-year demographic data to compare tree performance across soil types, and constructed population matrix models to analyze the population dynamics. Species showed only minor changes in mortality and juvenile growth across soil types, although recruitment differed greatly. Clear, interspecific demographic trade-offs between growth and mortality were found in all soil types. The relative trade-offs by a species did not differ substantially among the soil types. Population sizes were projected to remain stable in all soil types for all species with one exception. Our life-table response experiment demonstrated that the population dynamics of a species differed only subtly among soil types. Therefore, species with strong density differences across soil types do not necessarily differ greatly in their population dynamics across the soil types. In contrast, interspecific differences in population dynamics were large. The trade-off between mortality and growth led to a negative correlation between the contributions of mortality and growth to variations in the population growth rate (λ) and thus reduced their net contributions. Recruitment had little impact on the variation in λ. The combination of these factors resulted in little variation in λ among species.
Quadrat-based analysis of two rainforest plots of area 50 ha, one in Panama (Barro Colorado Island, BCI) and the other in Malaysia (Pasoh), shows that in both plots recruitment is in general negatively correlated with both numbers and biomass of adult trees of the same species in the same quadrat. At BCI, this effect is not significantly influenced by treefall gaps. In both plots, recruitment of individual species is negatively correlated with the numbers of trees of all species in the quadrats, but not with overall biomass. These observations suggest, but do not prove, widespread frequency-dependent effects produced by pathogens and seed-predators that act most effectively in quadrats crowded with trees. Within-species correlations of mortality with numbers or biomass are not found in either plot, indicating that most frequency-dependent mortality takes place before the trees reach 1 cm in diameter. Stochastic effects caused by BCI's more rapid tree turnover may contribute to a larger variance in diversity from quadrat to quadrat at BCI, although they are not sufficient to explain why BCI has fewer than half as many tree species as Pasoh. Finally, in both plots quadrats with low diversity show a significant increase in diversity over time, and this increase is stronger at BCI. This process, like the frequency-dependence, will tend to maintain diversity over time. In general, these non-random forces that should lead to the maintenance of diversity are slightly stronger at BCI, even though the BCI plot is less diverse than the Pasoh plot.
Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.
Tree mortality rates appear to be increasing in moist tropical forests (MTFs) with significant carbon cycle consequences. Here, we review the state of knowledge regarding MTF tree mortality, create a conceptual framework with testable hypotheses regarding the drivers, mechanisms and interactions that may underlie increasing MTF mortality rates, and identify the next steps for improved understanding and reduced prediction. Increasing mortality rates are associated with rising temperature and vapor pressure deficit, liana abundance, drought, wind events, fire and, possibly, CO2 fertilization-induced increases in stand thinning or acceleration of trees reaching larger, more vulnerable heights. The majority of these mortality drivers may kill trees in part through carbon starvation and hydraulic failure. The relative importance of each driver is unknown. High species diversity may buffer MTFs against large-scale mortality events, but recent and expected trends in mortality drivers give reason for concern regarding increasing mortality within MTFs. Models of tropical tree mortality are advancing the representation of hydraulics, carbon and demography, but require more empirical knowledge regarding the most common drivers and their subsequent mechanisms. We outline critical datasets and model developments required to test hypotheses regarding the underlying causes of increasing MTF mortality rates, and improve prediction of future mortality under climate change.
What causes individual tree death in tropical forests remains a major gap in our understanding of the biology of tropical trees and leads to significant uncertainty in predicting global carbon cycle dynamics. We measured individual characteristics (diameter at breast height, wood density, growth rate, crown illumination and crown form) and environmental conditions (soil fertility and habitat suitability) for 26 425 trees ≥ 10 cm diameter at breast height belonging to 416 species in a 52-ha plot in Lambir Hills National Park, Malaysia. We used structural equation models to investigate the relationships among the different factors and tree mortality. Crown form (a proxy for mechanical damage and other stresses) and prior growth were the two most important factors related to mortality. The effect of all variables on mortality (except habitat suitability) was substantially greater than expected by chance. Tree death is the result of interactions between factors, including direct and indirect effects. Crown form/damage and prior growth mediated most of the effect of tree size, wood density, fertility and habitat suitability on mortality. Large-scale assessment of crown form or status may result in improved prediction of individual tree death at the landscape scale.
Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
Opportunities to conduct large-scale field experiments are rare, but provide a unique opportunity to reveal the complex processes that operate within natural ecosystems. Here, we review the design of existing, large-scale forest fragmentation experiments. Based on this review, we develop a design for the Stability of Altered Forest Ecosystems (SAFE) Project, a new forest fragmentation experiment to be located in the lowland tropical forests of Borneo (Sabah, Malaysia). The SAFE Project represents an advance on existing experiments in that it: (i) allows discrimination of the effects of landscape-level forest cover from patch-level processes; (ii) is designed to facilitate the unification of a wide range of data types on ecological patterns and processes that operate over a wide range of spatial scales; (iii) has greater replication than existing experiments; (iv) incorporates an experimental manipulation of riparian corridors; and (v) embeds the experimentally fragmented landscape within a wider gradient of land-use intensity than do existing projects. The SAFE Project represents an opportunity for ecologists across disciplines to participate in a large initiative designed to generate a broad understanding of the ecological impacts of tropical forest modification.
Sustainable forest management (SFM), which has been recently introduced to tropical natural production forests, is beneficial in maintaining timber resources, but information about the co-benefits for biodiversity conservation and carbon sequestration is currently lacking.
There is accumulating evidence that similar suites of plant traits may affect leaf palatability and leaf litter decomposability. However, the possible association between leaf herbivory and litter decomposition rates across species in species-diverse natural ecosystems such as tropical rain forests remains unexplored, despite its importance in estimating the herbivory effects on carbon and nutrient cycling of ecosystems. We found no strong association between leaf herbivory and litter decomposition rates across 40 tree species in a Malaysian tropical rain forest, even though the leaf and litter traits were tightly correlated. This is because the leaf and litter traits related to herbivory and decomposition rates in the field were inconsistent. Leaf toughness accounted for only a small part of the variation in the herbivory rate, whereas a number of litter traits (the leaf mass per area, lignin to nitrogen ratio, and condensed tannin concentration) accurately predicted the decomposition rate across species. These results suggest that herbivory rate across species may not be strongly related to single leaf traits, probably because plant-herbivore interactions in tropical rain forests are highly diverse; on the other hand, plant-decomposer interactions are less specific and can be governed by litter chemicals. We also investigated two factors, phylogeny and tree functional types, that could affect the relationship between herbivory and decomposition across species. Phylogenetic relatedness among the species did not affect the relationship between herbivory and decomposition. In contrast, when the plants were segregated according to their leaf emergence pattern, we found a significant positive relationship between herbivory and decomposition rates for continuous-leafing species. In these species, the condensed tannin to N ratios in leaves and litter were related to herbivory and decomposition rates, respectively. However, we did not observe a similar trend for synchronous-leafing species. These results suggest that the relationship between herbivory and decomposition may be more greatly affected by functional types than by phylogenetic relatedness among species. In conclusion, our results suggest that well-defended leaves are not necessarily less decomposable litter in a tropical rain forest community, implying that herbivory may not generate positive feedback for carbon and nutrient cycling in this type of ecosystem.
The recurrent patterns in the commonness and rarity of species in ecological communities--the relative species abundance--have puzzled ecologists for more than half a century. Here we show that the framework of the current neutral theory in ecology can easily be generalized to incorporate symmetric density dependence. We can calculate precisely the strength of the rare-species advantage that is needed to explain a given RSA distribution. Previously, we demonstrated that a mechanism of dispersal limitation also fits RSA data well. Here we compare fits of the dispersal and density-dependence mechanisms for empirical RSA data on tree species in six New and Old World tropical forests and show that both mechanisms offer sufficient and independent explanations. We suggest that RSA data cannot by themselves be used to discriminate among these explanations of RSA patterns--empirical studies will be required to determine whether RSA patterns are due to one or the other mechanism, or to some combination of both.
One important hypothesis to explain tree-species coexistence in tropical forests suggests that increased attack by natural enemies near conspecific trees gives locally rare species a competitive advantage. Host ranges of natural enemies generally encompass several closely related plant taxa suggesting that seedlings should also do poorly around adults of closely related species. We investigated the effects of adult Parashorea malaanonan on seedling survival in a Bornean rain forest. Survival of P. malaanonan seedlings was highest at intermediate distances from parent trees while heterospecific seedlings were unaffected by distance. Leaf herbivores did not drive this relationship. Survival of seedlings was lowest for P. malaanonan, and increased with phylogenetic dissimilarity from this species, suggesting that survival of close relatives of common species is reduced. This study suggests that distance dependence contributes to species coexistence and highlights the need for further investigation into the role of shared plant enemies in community dynamics.
The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
Occasional periods of drought are typical of most tropical forests, but climate change is increasing drought frequency and intensity in many areas across the globe, threatening the structure and function of these ecosystems. The effects of intermittent drought on tropical tree communities remain poorly understood and the potential impacts of intensified drought under future climatic conditions are even less well known. The response of forests to altered precipitation will be determined by the tolerances of different species to reduced water availability and the interactions among plants that alleviate or exacerbate the effects of drought. Here, we report the response of experimental monocultures and mixtures of tropical trees to simulated drought, which reveals a fundamental shift in the nature of interactions among species. Weaker competition for water in diverse communities allowed seedlings to maintain growth under drought while more intense competition among conspecifics inhibited growth under the same conditions. These results show that reduced competition for water among species in mixtures mediates community resistance to drought. The delayed onset of competition for water among species in more diverse neighbourhoods during drought has potential implications for the coexistence of species in tropical forests and the resilience of these systems to climate change.
Documenting the scale and intensity of fine-scale spatial genetic structure (FSGS), and the processes that shape it, is relevant to the sustainable management of genetic resources in timber tree species, particularly where logging or fragmentation might disrupt gene flow. In this study we assessed patterns of FSGS in three species of Dipterocarpaceae (Parashorea tomentella, Shorea leprosula and Shorea parvifolia) across four different tropical rain forests in Malaysia using nuclear microsatellite markers. Topographic heterogeneity varied across the sites. We hypothesised that forests with high topographic heterogeneity would display increased FSGS among the adult populations driven by habitat associations. This hypothesis was not supported for S. leprosula and S. parvifolia which displayed little variation in the intensity and scale of FSGS between sites despite substantial variation in topographic heterogeneity. Conversely, the intensity of FSGS for P. tomentella was greater at a more topographically heterogeneous than a homogeneous site, and a significant difference in the overall pattern of FSGS was detected between sites for this species. These results suggest that local patterns of FSGS may in some species be shaped by habitat heterogeneity in addition to limited gene flow by pollen and seed dispersal. Site factors can therefore contribute to the development of FSGS. Confirming consistency in species' FSGS amongst sites is an important step in managing timber tree genetic diversity as it provides confidence that species specific management recommendations based on species reproductive traits can be applied across a species' range. Forest managers should take into account the interaction between reproductive traits and site characteristics, its consequences for maintaining forest genetic resources and how this might influence natural regeneration across species if management is to be sustainable.