Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Zhang X, Zhao L, Xiang S, Sun Y, Wang P, Chen JJ, et al.
    J Ethnopharmacol, 2023 May 10;307:116243.
    PMID: 36791927 DOI: 10.1016/j.jep.2023.116243
    ETHNOPHARMACOLOGICAL RELEVANCE: Yishen Tongluo formula (YSTLF) is formulated based on traditional Chinese medicine theory for the treatment of Diabetic kidney disease (DKD) and has been shown to be effective in improving the symptoms of DKD according to the clinical observation.

    AIM OF THE STUDY: To explore the effect of YSTLF on DKD and figure out whether its effects were due to the regulation Sirt6/TGF-β1/Smad2/3 pathway and promoting degradation of TGF-β1.

    MATERIALS AND METHODS: The extract of YSTLF at 1, 2.5 and 5 g/kg was orally administered to C57BLKS/J (db/db) mice for 8 weeks and db/db mice were given valsartan as a positive control. The littermate db/m and db/db mice were given vehicle as the control and model group, respectively. Blood urea nitrogen and serum creatinine were detected and the urinary albumin excretion, urea albumin creatinine ratio was calculated. The histopathological change of renal tissues in each group was determined. Simultaneously, the levels of fibrosis-related proteins and messenger RNA (mRNA) in kidney and high glucose (HG)-induced SV40-MES-13 cells were detected. The roles of YSTLF in regulating of Sirt6/TGF-β1/Smad2/3 signaling pathway were investigated in HG-stimulated SV40-MES-13 cells and validated in db/db mice. Furthermore, the effect of YSTLF on TGF-β1 degradation was investigated in HG-stimulated SV40-MES-13 cells.

    RESULTS: YSTLF significantly improved the renal function in DKD mice. YSTLF dose-dependently attenuated pathological changes and suppressed the expression of type I collagen, alpha smooth muscle actin, type IV collagen, and fibronectin in vitro and in vivo, resulting in ameliorating of renal fibrosis. YSTLF positively regulated Sirt6 expression, while inhibited the activating of TGF-β1/Smad2/3 signaling pathway. TGF-β1 was steady expressed in HG-stimulated SV40-MES-13 cells, whereas was continuously degraded under YSTLF treatment.

    CONCLUSIONS: YSTLF significantly ameliorates renal damages and fibrosis may via regulating Sirt6/TGF-β1/Smad2/3 signaling pathway as well as promoting the degradation of TGF-β1.

    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  2. Ahmad Zawawi SS, Mohd Azram NAS, Sulong S, Zakaria AD, Lee YY, Che Jalil NA, et al.
    Asian Pac J Cancer Prev, 2023 Sep 01;24(9):3099-3107.
    PMID: 37774061 DOI: 10.31557/APJCP.2023.24.9.3099
    BACKGROUND: Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-β1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts.

    AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression.

    METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control.  Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium.

    RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01).

    CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.

    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  3. Razali RA, Yazid MD, Saim A, Idrus RBH, Lokanathan Y
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835384 DOI: 10.3390/ijms24043974
    Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFβ1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFβ receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 μg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFβ1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFβ receptor component) in comparison to oleuropein. TGFβ1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  4. Batarfi WA, Mohd Yunus MH, Hamid AA
    Molecules, 2023 Mar 15;28(6).
    PMID: 36985625 DOI: 10.3390/molecules28062652
    Skin wound healing is a multiphase physiological process that involves the activation of numerous types of cells and is characterized by four phases, namely haemostasis, inflammatory, proliferative, and remodeling. However, on some occasions this healing becomes pathological, resulting in fibrosis. Epithelial mesenchymal transition (EMT) is an important process in which epithelial cells acquire mesenchymal fibroblast-like characteristics. Hydroxytyrosol (HT) is a phenolic compound extracted from olive oil and has been proven to have several health benefits. The aim of this study was to determine the effect of HT in type II EMT in human skin wound healing via cell viability, proliferation, migration, and proteins expression. Human dermal fibroblasts (HDF) isolated from skin samples were cultured in different concentrations of HT and EMT model, induced by adding 5 ng/mL of transforming growth factor-beta (TGF-β) to the cells. HT concentrations were determined via 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells' migrations were evaluated using scratch and transwell migration assay. Protein expressions were evaluated via immunocytochemistry. The result showed that HT at 0.2% and 0.4% significantly increased the proliferation rate of HDF (p < 0.05) compared to control. Scratch assay after 24 h showed increased cell migration in cells treated with 0.4% HT (p < 0.05) compared to the other groups. After 48 h, both concentrations of HT showed increased cell migration (p < 0.05) compared to the TGF-β group. Transwell migration revealed that HT enhanced the migration capacity of cells significantly (p < 0.05) as compared to TGF-β and the control group. In addition, HT supplemented cells upregulate the expression of epithelial marker E-cadherin while downregulating the expression of mesenchymal marker vimentin in comparison to TGF-β group and control group. This study showed that HT has the ability to inhibit EMT, which has potential in the inhibition of fibrosis and persistent inflammation related to skin wound healing.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  5. Razali RA, Nik Ahmad Eid NAH, Jayaraman T, Amir Hassan MA, Azlan NQ, Ismail NF, et al.
    BMC Complement Altern Med, 2018 Jun 26;18(1):197.
    PMID: 29940929 DOI: 10.1186/s12906-018-2250-5
    BACKGROUND: One of the molecular mechanisms involved in upper airway-related diseases is epithelial-to-mesenchymal transition (EMT). Olea europaea (OE) has anti-inflammatory properties and thus, great potential to prevent EMT. This study aimed to investigate the effect of OE on EMT in primary nasal human respiratory epithelial cells (RECs).

    METHODS: Respiratory epithelial cells were isolated and divided into four groups: control (untreated), treated with 0.05% OE (OE group), EMT induced with 5 ng/ml of transforming growth factor beta-1 (TGFβ1 group) and treated with 5 ng/ml TGFβ1 + 0.05% OE (TGFβ1 + OE group). The effects of OE treatment on growth kinetics, morphology and protein expression in RECs were evaluated. Immunocytochemistry analysis was performed to quantitate the total percentage of E-cadherin and vimentin expression from day 1 to day 3.

    RESULTS: There were no significant differences between untreated RECs and OE-treated RECs in terms of their morphology, growth kinetics and protein expression. Induction with TGFβ1 caused RECs to have an elongated spindle shape, a slower proliferation rate, a higher expression of vimentin and a lower expression of E-cadherin compared with the control. Cells in the TGFβ1 + OE group had similar epithelial shape to untreated group however it had no significant differences in their proliferation rate when compared to TGFβ1-induced RECs. Cells treated with TGFβ1 + OE showed significantly reduced expression of vimentin and increased expression of E-cadherin compared with the TGFβ1 group (P growth kinetics and protein expression markers (E-cadherin and vimentin) upon treatment with OE and TGFβ1. Therefore, this study could provide insight into the therapeutic potential of OE to inhibit pathological tissue remodelling and persistent inflammation.

    Matched MeSH terms: Transforming Growth Factor beta1/metabolism*
  6. Sideek MA, Smith J, Menz C, Adams JRJ, Cowin AJ, Gibson MA
    Int J Mol Sci, 2017 Oct 09;18(10).
    PMID: 28991210 DOI: 10.3390/ijms18102114
    Latent transforming growth factor-β-1 binding protein-2 (LTBP-2) belongs to the LTBP-fibrillin superfamily of extracellular proteins. Unlike other LTBPs, LTBP-2 does not covalently bind transforming growth factor-β1 (TGF-β1) but appears to be implicated in the regulation of TGF-β1 bioactivity, although the mechanisms are largely unknown. In experiments originally designed to study the displacement of latent TGF-β1 complexes from matrix storage, we found that the addition of exogenous LTBP-2 to cultured human MSU-1.1 fibroblasts caused an increase in TGF-β1 levels in the medium. However, the TGF-β1 increase was due to an upregulation of TGF-β1 expression and secretion rather than a displacement of matrix-stored TGF-β1. The secreted TGF-β1 was mainly in an inactive form, and its concentration peaked around 15 h after addition of LTBP-2. Using a series of recombinant LTBP-2 fragments, the bioactivity was identified to a small region of LTBP-2 consisting of an 8-Cys motif flanked by four epidermal growth factor (EGF)-like repeats. The LTBP-2 stimulation of TGF-β expression involved the phosphorylation of both Akt and p38 mitogen-activated protein kinase (MAPK) signalling proteins, and specific inactivation of each protein individually blocked TGF-β1 increase. The search for the cell surface receptor mediating this LTBP-2 activity proved inconclusive. Inhibitory antibodies to integrins β1 and αVβ5 showed no reduction of LTBP-2 stimulation of TGF-β1. However, TGF-β1 upregulation was partially inhibited by anti-αVβ3 integrin antibodies, suggestive of a direct or indirect role for this integrin. Overall, the study indicates that LTBP-2 can directly upregulate cellular TGF-β1 expression and secretion by interaction with cells via a short central bioactive region. This may be significant in connective tissue disorders involving aberrant TGF-β1 signalling.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism*
  7. Melling GE, Flannery SE, Abidin SA, Clemmens H, Prajapati P, Hinsley EE, et al.
    Carcinogenesis, 2018 05 28;39(6):798-807.
    PMID: 29506142 DOI: 10.1093/carcin/bgy032
    The dissemination of cancer cells to local and distant sites depends on a complex and poorly understood interplay between malignant cells and the cellular and non-cellular components surrounding them, collectively termed the tumour microenvironment. One of the most abundant cell types of the tumour microenvironment is the fibroblast, which becomes corrupted by locally derived cues such as TGF-β1 and acquires an altered, heterogeneous phenotype (cancer-associated fibroblasts, CAF) supportive of tumour cell invasion and metastasis. Efforts to develop new treatments targeting the tumour mesenchyme are hampered by a poor understanding of the mechanisms underlying the development of CAF. Here, we examine the contribution of microRNA to the development of experimentally-derived CAF and correlate this with changes observed in CAF derived from tumours. Exposure of primary normal human fibroblasts to TGF-β1 resulted in the acquisition of a myofibroblastic CAF-like phenotype. This was associated with increased expression of miR-145, a miRNA predicted in silico to target multiple components of the TGF-β signalling pathway. miR-145 was also overexpressed in CAF derived from oral cancers. Overexpression of miR-145 blocked TGF-β1-induced myofibroblastic differentiation and reverted CAF towards a normal fibroblast phenotype. We conclude that miR-145 is a key regulator of the CAF phenotype, acting in a negative feedback loop to dampen acquisition of myofibroblastic traits, a key feature of CAF associated with poor disease outcome.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism*
  8. Ahmed KA, Jabbar AAJ, Galali Y, M Al-Qaaneh A, Akçakavak G, Salehen NA, et al.
    Skin Res Technol, 2024 May;30(5):e13727.
    PMID: 38711343 DOI: 10.1111/srt.13727
    Wound healing is a complex, intricate, and dynamic process that requires effective therapeutic management. The current study evaluates the wound healing potentials of methanolic extract of Cuminum cyminum L. seeds (CCS) in rats. Sprague Dawley (24) rats were distributed into four cages, wounds produced on the back of the neck, and received two daily topical treatments for 14 days: A, rats received normal saline; B, wounded rats treated with intrasite gel; C and D, rats received 0.2 mL of 250 and 500 mg/kg of CCS, respectively. After that, wound area and closure percentage were evaluated, and wound tissues were dissected for histopathological, immunohistochemical, and biochemical examinations. Acute toxicity trials of methanolic extract of CCS showed the absence of any physiological changes or mortality in rats. CCS application caused a significant reduction in wound size and a statistically elevated percentage of wound contraction than those of vehicle rats. CCS treatment caused significant up-regulation of collagen fiber, fibroblasts, and fewer inflammatory cells (inflammation) in granulation tissues. TGF-β1 (angiogenetic factor) was significantly more expressed in CCS-treated rats in comparison to normal saline-treated rats; therefore, more fibroblasts transformed into myofibroblasts (angiogenesis). CCS-treated rats showed remarkable antioxidant potentials (higher SOD and CAT enzymes) and decreased MDA (lipid peroxidation) levels in their wound tissue homogenates. Hydroxyproline amino acid (collagen) was significantly up-regulated by CCS treatment, which is commonly related to faster wound closure area. The outcomes suggest CCS as a viable new source of pharmaceuticals for wound treatment.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  9. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  10. Wu H, Sun Y, Wong WL, Cui J, Li J, You X, et al.
    Eur J Med Chem, 2020 Mar 01;189:112042.
    PMID: 31958737 DOI: 10.1016/j.ejmech.2020.112042
    Transforming growth factor-β (TGF-β) plays an important role in regulating epithelial to mesenchymal transition (EMT) and the TGF-β signaling pathway is a potential target for therapeutic intervention in the development of many diseases, such as fibrosis and cancer. Most currently available inhibitors of TGF-β signaling function as TGF-β receptor I (TβR-I) kinase inhibitors, however, such kinase inhibitors often lack specificity. In the present study, we targeted the extracellular protein binding domain of the TGF-β receptor II (TβR-II) to interfere with the protein-protein interactions (PPIs) between TGF-β and its receptors. One compound, CJJ300, inhibited TGF-β signaling by disrupting the formation of the TGF-β-TβR-I-TβR-II signaling complex. Treatment of A549 cells with CJJ300 resulted in the inhibition of downstream signaling events such as the phosphorylation of key factors along the TGF-β pathway and the induction of EMT markers. Concomitant with these effects, CJJ300 significantly inhibited cell migration. The present study describes for the first time a designed molecule that can regulate TGF-β-induced signaling and EMT by interfering with the PPIs required for the formation of the TGF-β signaling complex. Therefore, CJJ300 can be an important lead compound with which to study TGF-β signaling and to design more potent TGF-β signaling antagonists.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism*
  11. Fonseka M, Ramasamy R, Tan BC, Seow HF
    Cell Biol Int, 2012 Sep;36(9):793-801.
    PMID: 22335239 DOI: 10.1042/CBI20110595
    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  12. Ab-Rahim S, Selvaratnam L, Raghavendran HR, Kamarul T
    Mol Cell Biochem, 2013 Apr;376(1-2):11-20.
    PMID: 23238871 DOI: 10.1007/s11010-012-1543-0
    Tissue engineering approaches often require expansion of cell numbers in vitro to accelerate tissue regenerative processes. Although several studies have used this technique for therapeutic purposes, a major concern involving the use of isolated chondrocyte culture is the reduction of extracellular matrix (ECM) protein expressed due to the transfer of cells from the normal physiological milieu to the artificial 2D environment provided by the cell culture flasks. To overcome this issue, the use of alginate hydrogel beads as a substrate in chondrocyte cultures has been suggested. However, the resultant characteristics of cells embedded in this bead is elusive. To elucidate this, a study using chondrocytes isolated from rabbit knee articular cartilage expanded in vitro as monolayer and chondrocyte-alginate constructs was conducted. Immunohistochemical evaluation and ECM distribution was examined with or without transforming growth factor (TGF-β1) supplement to determine the ability of cells to express major chondrogenic proteins in these environments. Histological examination followed by transmission electron microscopy and scanning electron microscopy was performed to determine the morphology and the ultrastructural characteristics of these cells. Results demonstrated a significant increase in glycosaminoglycan/mg protein levels in chondrocyte cultures grown in alginate construct than in monolayer cultures. In addition, an abundance of ECM protein distribution surrounding chondrocytes cultured in alginate hydrogel was observed. In conclusion, the current study demonstrates that the use of alginate hydrogel beads in chondrocyte cultures with or without TGF-β1 supplement provided superior ECM expression than monolayer cultures.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  13. Shafiu Kamba A, Zakaria ZA
    Biomed Res Int, 2014;2014:215097.
    PMID: 24734228 DOI: 10.1155/2014/215097
    Calcium carbonate (CaCO3) nanocrystals derived from cockle shells emerge to present a good concert in bone tissue engineering because of their potential to mimic the composition, structure, and properties of native bone. The aim of this study was to evaluate the biological response of CaCO3 nanocrystals on hFOB 1.19 and MC3T3 E-1 osteoblast cells in vitro. Cell viability and proliferation were assessed by MTT and BrdU assays, and LDH was measured to determine the effect of CaCO3 nanocrystals on cell membrane integrity. Cellular morphology was examined by SEM and fluorescence microscopy. The results showed that CaCO3 nanocrystals had no toxic effects to some extent. Cell proliferation, alkaline phosphatase activity, and protein synthesis were enhanced by the nanocrystals when compared to the control. Cellular interactions were improved, as indicated by SEM and fluorescent microscopy. The production of VEGF and TGF-1 was also affected by the CaCO3 nanocrystals. Therefore, bio-based CaCO3 nanocrystals were shown to stimulate osteoblast differentiation and improve the osteointegration process.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  14. Lim CK, Halim AS, Yaacob NS, Zainol I, Noorsal K
    J Biosci Bioeng, 2013 Apr;115(4):453-8.
    PMID: 23177217 DOI: 10.1016/j.jbiosc.2012.10.010
    The effects of locally produced chitosan (CPSRT-NC-bicarbonate) in the intervention of keloid pathogenesis were investigated in vitro. A human keratinocyte-fibroblast co-culture model was established to investigate the protein levels of human collagen type-I, III and V in a western blotting analysis, the secreted transforming growth factor-β1 (TGF-β1) in an enzyme-linked immunosorbent assay (ELISA) and the mRNA levels of TGF-β1's intracellular signaling molecules (SMAD2, 3, 4 and 7) in a real-time PCR analysis. Keratinocyte-fibroblast co-cultures were maintained in DKSFM:DMEM:F12 (2:2:1) medium. Collagen type-I was found to be the dominant form in primary normal human dermal fibroblast (pNHDF) co-cultures, whereas collagen type-III was more abundant in primary keloid-derived human dermal fibroblast (pKHDF) co-cultures. Collagen type-V was present as a minor component in the skin. TGF-β1, SMAD2 and SMAD4 were expressed more in the pKHDF than the pNHDF co-cultures. Co-cultures with normal keratinocytes suppressed collagen type-III, SMAD2, SMAD4 and TGF-β1 expressions and CPSRT-NC-bicarbonate enhanced this effect. In conclusion, the CPSRT-NC-bicarbonate in association with normal-derived keratinocytes demonstrated an ability to reduce TGF-β1, SMAD2 and SMAD4 expressions in keloid-derived fibroblast cultures, which may be useful in keloid intervention.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  15. Hiong LC, Voon KL, Abdullah NA, Sattar MA, Rahman NA, Khan AH, et al.
    Acta Pharmacol Sin, 2008 Apr;29(4):451-7.
    PMID: 18358091 DOI: 10.1111/j.1745-7254.2008.00772.x
    The aim of the present study was to investigate the effectiveness of transforming growth factor (TGF)-beta1 antisense oligodeoxynucleotides (ODN) in ameliorating deteriorated kidney function in rats with puromycin-induced chronic renal failure (CRF).
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  16. Hasan NAHM, Harith HH, Israf DA, Tham CL
    Mol Biol Rep, 2020 May;47(5):3511-3519.
    PMID: 32279207 DOI: 10.1007/s11033-020-05439-x
    Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  17. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, et al.
    Carcinogenesis, 2017 01;38(1):76-85.
    PMID: 27803052 DOI: 10.1093/carcin/bgw113
    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism*
  18. Zhang Y, Lee S, Xu W
    Biochem Biophys Res Commun, 2020 04 16;524(4):1018-1024.
    PMID: 32063363 DOI: 10.1016/j.bbrc.2020.02.021
    Pten deletion in the hematopoietic stem cells (HSC) causes a myeloproliferative disorder, which may subsequently develop into a T-cell acute lymphoblastic leukemia (T-ALL). β-catenin expression was dramatically increased in the c-KitmidCD3+Lin- leukemia stem cells (LSC) and was critical for T-ALL development. Therefore, the inactivation of β-catenin in LSC may have a potential to eliminate the LSC. In this study, we investigated the mechanism of enhancement of the β-catenin expression and subsequently used a drug to inactivate β-catenin expression in T-ALL. Western blot (WB) analysis revealed an increased level of β-catenin in the leukemic cells, but not in the pre-leukemic cells. Furthermore, the WB analysis of the thymic cells from different stages of leukemia development showed that increased expression of β-catenin was not via the pS9-GSK3β signaling, but was dependent on the pT308-Akt activation. Miltefosine (Hexadecylphosphocholine) is the first oral anti-Leishmania drug, which is a phospholipid agent and has been shown to inhibit the PI3K/Akt activity. Treatment of the PtenΔ/Δ leukemic mice with Miltefosine for different durations demonstrated that the pT308-Akt and the β-catenin expressions were inhibited in the leukemia blast cells. Miltefosine treatment also suppressed the TGFβ1/Smad3 signaling pathway. Analysis of TGFβ1 in the sorted subpopulations of the blast cells showed that TGFβ1 was secreted by the CD3+CD4- subpopulation and may exert effects on the subpopulations of both CD3+CD4+ and CD3+CD4- leukemia blast cells. When a TGFβR1 inhibitor, SB431542 was injected into the PtenΔ/Δ leukemic mice, the Smad3 and β-catenin expressions were down-regulated. On the basis of the results, we conclude that Miltefosine can suppress leukemia by degrading β-catenin through repression of the pT308-Akt and TGFβ1/Smad3 signaling pathways. This study demonstrates a possibility to inhibit Pten loss-associated leukemia genesis via targeting Akt and Smad3.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  19. Tajul Arifin K, Sulaiman S, Md Saad S, Ahmad Damanhuri H, Wan Ngah WZ, Mohd Yusof YA
    BMC Cancer, 2017 12 21;17(1):879.
    PMID: 29268718 DOI: 10.1186/s12885-017-3883-3
    BACKGROUND: Chlorella vulgaris (ChV), a unicellular green algae has been reported to have anticancer and antioxidant effects. The aim of this study was to determine the chemopreventive effect of ChV on liver cancer induced rats by determining the level and expression of several liver tumour markers.

    METHODS: Male Wistar rats (200-250 g) were divided into 4 groups according to the diet given: control group (normal diet), ChV group with three different doses (50, 150 and 300 mg/kg body weight), liver cancer- induced group (choline deficient diet + 0.1% ethionine in drinking water or CDE group), and the treatment group (CDE group treated with three different doses of ChV). Rats were killed at 0, 4, 8 and 12 weeks of experiment and blood and tissue samples were taken from all groups for the determination of tumour markers expression alpha-fetoprotein (AFP), transforming growth factor-β (TGF-β), M2-pyruvate kinase (M2-PK) and specific antigen for oval cells (OV-6).

    RESULTS: Serum level of TGF-β increased significantly (p < 0.05) in CDE rats. However, ChV at all doses managed to decrease (p < 0.05) its levels to control values. Expressions of liver tumour markers AFP, TGF-β, M2-PK and OV-6 were significantly higher (p < 0.05) in tissues of CDE rats when compared to control showing an increased number of cancer cells during hepatocarcinogenesis. ChV at all doses reduced their expressions significantly (p < 0.05).

    CONCLUSIONS: Chlorella vulgaris has chemopreventive effect by downregulating the expression of tumour markers M2-PK, OV-6, AFP and TGF-β, in HCC-induced rats.

    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
  20. Sideek MA, Teia A, Kopecki Z, Cowin AJ, Gibson MA
    J Mol Histol, 2016 Feb;47(1):35-45.
    PMID: 26644005 DOI: 10.1007/s10735-015-9645-0
    We have recently shown that Latent transforming growth factor-beta-1 binding protein-2 (LTBP-2) has a single high-affinity binding site for fibroblast growth factor-2 (FGF-2) and that LTBP-2 blocks FGF-2 induced cell proliferation. Both proteins showed strong co-localisation within keloid skin from a single patient. In the current study, using confocal microscopy, we have investigated the distribution of the two proteins in normal and fibrotic skin samples including normal scar tissue, hypertrophic scars and keloids from multiple patients. Consistently, little staining for either protein was detected in normal adult skin and normal scar samples but extensive co-localisation of the two proteins was observed in multiple examples of hypertrophic scars and keloids. LTBP-2 and FGF-2 were co-localised to fine fibrous elements within the extracellular matrix identified as elastic fibres by immunostaining with anti-fibrillin-1 and anti-elastin antibodies. Furthermore, qPCR analysis of RNA samples from multiple patients confirmed dramatically increased expression of LTBP-2 and FGF-2, similar TGF-beta 1, in hypertrophic scar compared to normal skin and scar tissue. Overall the results suggest that elevated LTBP-2 may bind and sequester FGF-2 on elastic fibres in fibrotic tissues and modulate FGF-2's influence on the repair and healing processes.
    Matched MeSH terms: Transforming Growth Factor beta1/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links