Displaying publications 1 - 20 of 249 in total

Abstract:
Sort:
  1. Ukrainskaya V, Rubtsov Y, Pershin D, Podoplelova N, Terekhov S, Yaroshevich I, et al.
    Small, 2021 11;17(45):e2102643.
    PMID: 34605165 DOI: 10.1002/smll.202102643
    Development of CAR-T therapy led to immediate success in the treatment of B cell leukemia. Manufacturing of therapy-competent functional CAR-T cells needs robust protocols for ex vivo/in vitro expansion of modified T-cells. This step is challenging, especially if non-viral low-efficiency delivery protocols are used to generate CAR-T cells. Modern protocols for CAR-T cell expansion are imperfect since non-specific stimulation results in rapid outgrowth of CAR-negative T cells, and removal of feeder cells from mixed cultures necessitates additional purification steps. To develop a specific and improved protocol for CAR-T cell expansion, cell-derived membrane vesicles are taken advantage of, and the simple structural demands of the CAR-antigen interaction. This novel approach is to make antigenic microcytospheres from common cell lines stably expressing surface-bound CAR antigens, and then use them for stimulation and expansion of CAR-T cells. The data presented in this article clearly demonstrate that this protocol produced antigen-specific vesicles with the capacity to induce stronger stimulation, proliferation, and functional activity of CAR-T cells than is possible with existing protocols. It is predicted that this new methodology will significantly advance the ability to obtain improved populations of functional CAR-T cells for therapy.
    Matched MeSH terms: T-Lymphocytes*
  2. Singh S, Hassan D, Aldawsari HM, Molugulu N, Shukla R, Kesharwani P
    Drug Discov Today, 2020 01;25(1):223-229.
    PMID: 31738877 DOI: 10.1016/j.drudis.2019.11.003
    Immune checkpoint inhibitors (ICIs) are revolutionizing the treatment of many cancers and have demonstrated their potential as 'cancer terminators'. However, ICI treatment also has constraints, such as its immune-related adverse events (irAEs) and therapeutic resistance. These drawbacks are gradually being overcome through better knowledge of the immune system, history of disease, duration of treatment, combinational drug regimes, adequate biomarkers, and effective patient response monitoring. In this review, we discuss the present ICI therapy landscape and its therapeutic outcomes for various diseases. We also highlight biomarkers related to the ICI response.
    Matched MeSH terms: T-Lymphocytes/drug effects; T-Lymphocytes/immunology
  3. Saeidi A, Zandi K, Cheok YY, Saeidi H, Wong WF, Lee CYQ, et al.
    Front Immunol, 2018;9:2569.
    PMID: 30473697 DOI: 10.3389/fimmu.2018.02569
    T-cell exhaustion is a phenomenon of dysfunction or physical elimination of antigen-specific T cells reported in human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus (HCV) infections as well as cancer. Exhaustion appears to be often restricted to CD8+ T cells responses in the literature, although CD4+ T cells have also been reported to be functionally exhausted in certain chronic infections. Although our understanding of the molecular mechanisms associated with the transcriptional regulation of T-cell exhaustion is advancing, it is imperative to also explore the central mechanisms that control the altered expression patterns. Targeting metabolic dysfunctions with mitochondrion-targeted antioxidants are also expected to improve the antiviral functions of exhausted virus-specific CD8+ T cells. In addition, it is crucial to consider the contributions of mitochondrial biogenesis on T-cell exhaustion and how mitochondrial metabolism of T cells could be targeted whilst treating chronic viral infections. Here, we review the current understanding of cardinal features of T-cell exhaustion in chronic infections, and have attempted to focus on recent discoveries, potential strategies to reverse exhaustion and reinvigorate optimal protective immune responses in the host.
    Matched MeSH terms: CD8-Positive T-Lymphocytes/immunology*; CD8-Positive T-Lymphocytes/virology
  4. Yeo JG, Wasser M, Kumar P, Pan L, Poh SL, Ally F, et al.
    Nat Biotechnol, 2020 06;38(6):679-684.
    PMID: 32440006 DOI: 10.1038/s41587-020-0532-1
    Matched MeSH terms: T-Lymphocytes/cytology; T-Lymphocytes/immunology
  5. Abdullah M, Chai PS, Loh CY, Chong MY, Quay HW, Vidyadaran S, et al.
    Mol Nutr Food Res, 2011 May;55(5):803-6.
    PMID: 21520494 DOI: 10.1002/mnfr.201100087
    Fruit and vegetables have therapeutic potential as they dampen inflammation, have no known side-effects and as whole foods have prospective additive and synergistic benefits. Th1 (IFN-γ(+) CD4(+))/Th2 (IL-4(+)CD4(+)) T cells play a vital role in mediating inflammatory responses and may be regulated by regulatory T cells (Tregs). Effects of Carica papaya on cells of healthy individuals were determined using flow cytometry methods. Significant down-regulation of IFN-γ(+) CD4(+) (p=0.03, n=13), up-regulation of IL-4(+) CD4(+) (p=0.04, n=13) T cells and up-regulation of CD3(+) CD4(+) CD25(+) CD127(-) (p=0.001, n=15) Tregs were observed after papaya consumption. In vitro cultures showed up-regulation of Tregs in male subjects and was significantly associated with levels of IL-1β in culture supernatants (R(2) =0.608, p=0.04, n=12). Other inflammatory cytokines were significantly suppressed. Papaya consumption may exert an anti-inflammatory response mediated through Tregs and have potential in alleviating inflammatory conditions.
    Matched MeSH terms: CD4-Positive T-Lymphocytes/drug effects*; CD4-Positive T-Lymphocytes/immunology; T-Lymphocytes, Regulatory/drug effects*; T-Lymphocytes, Regulatory/immunology
  6. Loh LC, Vyas B, Kanabar V, Kemeny DM, O'Connor BJ
    Respir Med, 2006 Mar;100(3):519-28.
    PMID: 16039108
    Inhaled endotoxin or lipopolysaccharide (LPS) is implicated in the pathogenesis of pulmonary diseases. We investigated the inhalation effects of two different doses of LPS in healthy human subjects.
    Matched MeSH terms: CD4-Positive T-Lymphocytes/drug effects*; CD4-Positive T-Lymphocytes/metabolism; CD8-Positive T-Lymphocytes/drug effects*; CD8-Positive T-Lymphocytes/metabolism
  7. Mirsafian H, Manda SS, Mitchell CJ, Sreenivasamurthy S, Ripen AM, Mohamad SB, et al.
    Genomics, 2016 07;108(1):37-45.
    PMID: 26778813 DOI: 10.1016/j.ygeno.2016.01.002
    Long non-coding RNAs (lncRNAs) have been shown to possess a wide range of functions in both cellular and developmental processes including cancers. Although some of the lncRNAs have been implicated in the regulation of the immune response, the exact function of the large majority of lncRNAs still remains unknown. In this study, we characterized the lncRNAs in human primary monocytes, an essential component of the innate immune system. We performed RNA sequencing of monocytes from four individuals and combined our data with eleven other publicly available datasets. Our analysis led to identification of ~8000 lncRNAs of which >1000 have not been previously reported in monocytes. PCR-based validation of a subset of the identified novel long intergenic noncoding RNAs (lincRNAs) revealed distinct expression patterns. Our study provides a landscape of lncRNAs in monocytes, which could facilitate future experimental studies to characterize the functions of these molecules in the innate immune system.
    Matched MeSH terms: T-Lymphocytes, Helper-Inducer/metabolism; T-Lymphocytes/metabolism; T-Lymphocytes, Cytotoxic/metabolism; T-Lymphocytes, Regulatory/metabolism
  8. Reitsema RD, van der Geest KSM, Sandovici M, Jiemy WF, Graver JC, Abdulahad WH, et al.
    Rheumatology (Oxford), 2022 Dec 23;62(1):417-427.
    PMID: 35460236 DOI: 10.1093/rheumatology/keac250
    OBJECTIVES: Evidence from temporal artery tissue and blood suggests involvement of CD8+ T cells in the pathogenesis of GCA, but their exact role is poorly understood. Therefore, we performed a comprehensive analysis of circulating and lesional CD8+ T cells in GCA patients.

    METHODS: Circulating CD8+ T cells were analysed for differentiation status (CD45RO, CCR7), markers of activation (CD69 and CD25) and proliferation (Ki-67) in 14 newly diagnosed GCA patients and 18 healthy controls by flow cytometry. Proliferative capacity of CD8+ T cells upon anti-CD3 and anti-CD3/28 in vitro stimulation was assessed. Single-cell RNA sequencing of peripheral blood mononuclear cells of patients and controls (n = 3 each) was performed for mechanistic insight. Immunohistochemistry was used to detect CD3, CD8, Ki-67, TNF-α and IFN-γ in GCA-affected tissues.

    RESULTS: GCA patients had decreased numbers of circulating effector memory CD8+ T cells but the percentage of Ki-67-expressing effector memory CD8+ T cells was increased. Circulating CD8+ T cells from GCA patients demonstrated reduced T cell receptor activation thresholds and displayed a gene expression profile that is concurrent with increased proliferation. CD8+ T cells were detected in GCA temporal arteries and aorta. These vascular CD8+ T cells expressed IFN-γ but not Ki-67.

    CONCLUSION: In GCA, circulating effector memory CD8+ T cells demonstrate a proliferation-prone phenotype. The presence of CD8+ T cells in inflamed arteries seems to reflect recruitment of circulating cells rather than local expansion. CD8+ T cells in inflamed tissues produce IFN-γ, which is an important mediator of local inflammatory responses in GCA.

    Matched MeSH terms: CD8-Positive T-Lymphocytes/metabolism
  9. Ong MZ, Kimberly SA, Lee WH, Ling M, Lee M, Tan KW, et al.
    Curr Pharm Biotechnol, 2024;25(11):1377-1393.
    PMID: 39034731 DOI: 10.2174/0113892010257212231001082741
    CAR T-cell therapy is a promising approach for cancer treatment, utilizing a patient's own T-cells (autologous cell) or T-cells from a healthy donor (allogeneic cell) to target and destroy cancer cells. Over the last decade, significant advancements have been made in this field, including the development of novel CAR constructs, improved understanding of biology and mechanisms of action, and expanded clinical applications for treating a wider range of cancers. In this review, we provide an overview of the steps involved in the production of CAR T-cells and their mechanism of action. We also introduce different CAR T-cell therapies available, including their implementation, dosage, administration, treatment cost, efficacy, and resistance. Common side effects of CAR T-cell therapy are also discussed. The CAR T-cell products highlighted in this review are FDA-approved products, which include Kymriah® (tisagenlecleucel), Tecartus® (brexucabtagene autoleucel), Abecma® (Idecabtagene vicleucel), Breyanzi® (lisocabtagene maraleucel), and Yescarta® (axicabtagene ciloleucel). In conclusion, CAR T-cell therapy has made tremendous progress over the past decade and has the potential to revolutionize cancer treatment. This review paper provides insights into the progress, challenges, and future directions of CAR T-cell therapy, offering valuable information for researchers, clinicians, and patients.
    Matched MeSH terms: T-Lymphocytes/immunology
  10. Puvanesuaran VR, Nowroji K, Sreenivasan S, Noordin R, Balakrishnan V
    Eur Rev Med Pharmacol Sci, 2012 Aug;16(8):1028-32.
    PMID: 22913152
    AIM: To determine the usefulness of prednisolone in increasing the number of Toxoplasma (T.) gondii tachyzoites and bradyzoites in mice.
    MATERIALS AND METHODS: The mice were water-fasted prior to being immunosuppressed with oral inoculation of prednisolone. Tachyzoites of 7T gondii RH strain were inoculated into mice and the number of the parasites in the intraperitoneal fluids was then determined at 96 hs post-infection. In addition, tachyzoites of T. gondii ME49 strains were orally introduced into mice and the number of brain cysts formed was observed by microscopic observation at 45 days post-infection.
    RESULTS: T. gondii propagation was found to be significantly improved by introduction of the prednisolone (p = 0.0004); and the number of parasite showed positive correlation with the increment in dosage of prednisolone (r = 0.9051).
    CONCLUSIONS: The use of prednisolone greatly improved the number of parasite formed in mice: both tachyzoite and cyst forms.
    Matched MeSH terms: CD4-Positive T-Lymphocytes/drug effects; CD8-Positive T-Lymphocytes/drug effects
  11. Shao HY, Huang JY, Lin YW, Yu SL, Chitra E, Chang CK, et al.
    Int J Infect Dis, 2015 Dec;41:56-64.
    PMID: 26555647 DOI: 10.1016/j.ijid.2015.10.026
    The regulation of the immunopathology of respiratory syncytial virus (RSV) by regulatory T-cells (CD4(+)CD25(+)Foxp3(+); Tregs) is not understood.
    Matched MeSH terms: T-Lymphocytes, Regulatory
  12. Rajah T, Chow SC
    PLoS One, 2015;10(4):e0123711.
    PMID: 25915766 DOI: 10.1371/journal.pone.0123711
    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-fluoromethyl ketone (z-FA-FMK) readily inhibits anti-CD3-induced human T cell proliferation, whereas the analogue benzyloxycarbonyl-phenylalanine-alanine-diazomethyl ketone (z-FA-DMK) had no effect. In contrast, benzyloxycarbonyl-phenylalanine-alanine-chloromethyl ketone (z-FA-CMK) was toxic. The inhibition of T cell proliferation mediated by z-FA-FMK requires not only the FMK moiety, but also the benzyloxycarbonyl group at the N-terminal, suggesting some degree of specificity in z-FA-FMK-induced inhibition of primary T cell proliferation. We showed that z-FA-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-induced T cell proliferation mediated by z-FA-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and L-cysteine, whereas D-cysteine which cannot be metabolised to GSH has no effect. The inhibition of anti-CD3-induced up-regulation of CD25 and CD69 expression mediated by z-FA-FMK was also attenuated in the presence of exogenous GSH. Similar to cell proliferation, GSH, NAC and L-cysteine but not D-cysteine, completely restored the processing of caspase-8 and caspase-3 to their respective subunits in z-FA-FMK-treated activated T cells. Our collective results demonstrated that the inhibition of T cell activation and proliferation mediated by z-FA-FMK is due to oxidative stress via the depletion of GSH.
    Matched MeSH terms: T-Lymphocytes/drug effects*; T-Lymphocytes/metabolism; T-Lymphocytes/physiology
  13. Dhaliwal JS, Balasubramaniam T, Quek CK, Arumainnathan S, Nasuruddin BA
    Ann Acad Med Singap, 1995 Nov;24(6):785-8.
    PMID: 8838981
    A cross-sectional study on the expression of 6 lymphocyte markers was carried out on 481 patients with human immunodeficiency virus (HIV) and 79 normals after stratification based on absolute CD4 counts. The data were stratified according to the following groups: (I) 1201 to 1600, (II) 801 to 1200, (III) 401 to 800 and (IV) 0 to 400 (x 10(6) CD4 cells per mm3). The mean percentages of the subsets before stratification showed that HIV patients had increased percentages of CD3+ (75.7 against 66.9), CD3+CD8+ (52.2 against 32.3) and CD3+HLA-DR+ (36.1 against 14.4) cells and lower percentages of CD19 (10.3 against 13.3) and natural killer cells (13.7 against 20.4) when compared to controls in the same group. A definite trend, however, was only seen in CD3+CD8+ (47.4, 50.0, 54.0, 57.5 for groups I, II, III and IV respectively) and CD3+HLA-DR+ (29.1, 32.9, 38.4, 43.9 for groups I, II, III and IV respectively).
    Matched MeSH terms: T-Lymphocytes, Helper-Inducer/pathology; T-Lymphocytes/immunology*; T-Lymphocytes/pathology; CD4-Positive T-Lymphocytes/pathology*; CD8-Positive T-Lymphocytes/pathology
  14. Ramasamy R, Tong CK, Seow HF, Vidyadaran S, Dazzi F
    Cell Immunol, 2008 Feb;251(2):131-6.
    PMID: 18502411 DOI: 10.1016/j.cellimm.2008.04.009
    Mesenchymal stem cells (MSC) are non-haematopoietic stem cells that are capable of differentiating into tissues of mesodermal origin. MSC play an important role in supporting the development of fetal and adult haematopoiesis. More recently, MSC have also been found to exhibit inhibitory effect on T cell responses. However, there is little information on the mechanism of this immunosuppression and our study addresses this issue by targeting T cell functions at various level of immune responses. We have generated MSC from human adult bone marrow (BM) and investigated their immunoregulatory function at different phases of T cell responses. MSC showed the ability to inhibit mitogen (CD3/CD28 microbeads)-activated T cell proliferation in a dose-dependent manner. In order to evaluate the specificity of this immunosuppression, the proliferation of CD4(+) and CD8(+) cells were measured. MSC equally inhibit CD4(+) and CD8(+) subpopulations of T cells in response to PHA stimulation. However, the antiproliferative effect of MSC is not due to the inhibition of T cell activation. The expression of early activation markers of T cells, namely CD25 and CD69 were not significantly altered by MSC at 24, 48 and 72h. Furthermore, the immunosuppressive effect of MSC mainly targets T cell proliferation rather than their effector function since cytotoxicity of T cells is not affected. This work demonstrates that the immunosuppressive effect of MSC is exclusively a consequence of an anti-proliferative activity, which targets T cells of different subpopulations. For this reason, they have the potential to be exploited in the control of unwanted immune responses such as graft versus host disease (GVHD) and autoimmunity.
    Matched MeSH terms: CD4-Positive T-Lymphocytes/cytology; CD4-Positive T-Lymphocytes/immunology*; CD8-Positive T-Lymphocytes/cytology; CD8-Positive T-Lymphocytes/immunology*
  15. Rafieerad A, Yan W, Sequiera GL, Sareen N, Abu-El-Rub E, Moudgil M, et al.
    Adv Healthc Mater, 2019 08;8(16):e1900569.
    PMID: 31265217 DOI: 10.1002/adhm.201900569
    Inflammation is tightly linked to tissue injury. In regenerative medicine, immune activation plays a key role in rejection of transplanted stem cells and reduces the efficacy of stem cell therapies. Next-generation smart biomaterials are reported to possess multiple biologic properties for tissue repair. Here, the first use of 0D titanium carbide (Ti3 C2 ) MXene quantum dots (MQDs) for immunomodulation is presented with the goal of enhancing material-based tissue repair after injury. MQDs possess intrinsic immunomodulatory properties and selectively reduce activation of human CD4+ IFN-γ+ T-lymphocytes (control 87.1 ± 2.0%, MQDs 68.3 ± 5.4%) while promoting expansion of immunosuppressive CD4+ CD25+ FoxP3+ regulatory T-cells (control 5.5 ± 0.7%, MQDs 8.5 ± 0.8%) in a stimulated lymphocyte population. Furthermore, MQDs are biocompatible with bone marrow-derived mesenchymal stem cells and induced pluripotent stem cell-derived fibroblasts. Finally, Ti3 C2 MQDs are incorporated into a chitosan-based hydrogel to create a 3D platform with enhanced physicochemical properties for stem cell delivery and tissue repair. This composite hydrogel demonstrates increased conductivity while maintaining injectability and thermosensitivity. These findings suggest that this new class of biomaterials may help bridge the translational gap in material and stem cell-based therapies for tissue repair and treatment of inflammatory and degenerative diseases.
    Matched MeSH terms: CD4-Positive T-Lymphocytes/drug effects; CD4-Positive T-Lymphocytes/metabolism; T-Lymphocytes, Regulatory/drug effects; T-Lymphocytes, Regulatory/metabolism
  16. Yip WK, Abdullah MA, Yusoff SM, Seow HF
    Clin Exp Immunol, 2009 Mar;155(3):412-22.
    PMID: 19220831 DOI: 10.1111/j.1365-2249.2008.03793.x
    The pathological significance of the mechanisms of tumour immune-evasion and/or immunosuppression, such as loss of T cell signalling and increase in regulatory T cells (T(regs)), has not been well established in the nasopharyngeal carcinoma (NPC) microenvironment. To evaluate the T(reg) immunophenotypes in tumour-infiltrating lymphocytes (TILs), we performed a double-enzymatic immunostaining for detection of forkhead box P3 (FoxP3) and other markers including CD4, CD8, and CD25 on 64 NPC and 36 non-malignant nasopharyngeal (NP) paraffin-embedded tissues. Expression of CD3 zeta and CD3 epsilon was also determined. The prevalence of CD4(+)FoxP3(+) cells in CD4(+) T cells and the ratio of FoxP3(+)/CD8(+) were increased significantly in NPC compared with those in NP tissues (P < 0.001 and P = 0.025 respectively). Moreover, the ratio of FoxP3(+)/CD25(+)FoxP3(-) in NPC was significantly lower than that in NP tissues (P = 0.005), suggesting an imbalance favouring activated phenotype of T cells in NPC. A significant negative correlation between the abundance of FoxP3(+) and CD25(+)FoxP3(-) cells (P < 0.001) was also identified. When histological types of NPC were considered, a lower ratio of FoxP3(+)/CD25(+)FoxP3(-) was found in non-keratinizing and undifferentiated carcinomas. Increased CD4(+)FoxP3(+)/CD4(+) proportion and FoxP3(+)/CD8(+) ratio were associated with keratinizing squamous cell carcinoma. A reduced expression of CD3 zeta in TILs was found in 20.6% of the NPC tissues but none of the NP tissues. These data provide evidence for the imbalances of T(reg) and effector T cell phenotypes and down-regulation of signal-transducing molecules in TILs, supporting their role in suppression of immune response and immune evasion of NPC.
    Matched MeSH terms: CD4-Positive T-Lymphocytes/immunology; CD8-Positive T-Lymphocytes/immunology; T-Lymphocytes, Regulatory/immunology*
  17. Yaacob NS, Kaderi MA, Norazmi MN
    J Clin Immunol, 2009 Sep;29(5):595-602.
    PMID: 19472040 DOI: 10.1007/s10875-009-9300-1
    BACKGROUND: The peroxisome proliferator-activated receptors (PPARs) have been implicated in immune regulation. We determined the transcriptional expression of the three isoforms, PPARalpha, PPARgamma1, and PPARgamma2 in the peritoneal macrophages, CD4- and CD8-positive lymphocytes in non-obese diabetic (NOD) mice at 5 and 10 weeks of age as well as at diabetic stage.

    RESULTS: Compared to the non-obese diabetic resistant (NOR) mice, the peritoneal macrophages of NOD mice expressed increased levels of PPARalpha but reduced levels of PPARgamma2, while PPARgamma1 expression was unchanged in all age groups. CD4-positive lymphocytes expressed low levels of PPARalpha in diabetic NOD mice and greatly reduced expression of PPARgamma2 in all age groups. Unlike peritoneal macrophages and CD4-positive cells, the CD8-positive cells expressed low levels of PPARgamma1 in diabetic NOD mice but no difference in PPARalpha and PPARgamma2 expression was observed compared to NOR mice.

    CONCLUSION: The current findings may suggest an important regulatory role of PPARs in the pathogenesis of autoimmune diabetes.

    Matched MeSH terms: CD4-Positive T-Lymphocytes/immunology; CD4-Positive T-Lymphocytes/metabolism; CD4-Positive T-Lymphocytes/pathology; CD8-Positive T-Lymphocytes/immunology; CD8-Positive T-Lymphocytes/metabolism*; CD8-Positive T-Lymphocytes/pathology
  18. Shankar EM, Vignesh R, Dash AP
    Med Microbiol Immunol, 2018 Aug;207(3-4):167-174.
    PMID: 29936565 DOI: 10.1007/s00430-018-0547-0
    T-cell exhaustion reportedly leads to dysfunctional immune responses of antigen-specific T cells. Investigations have revealed that T cells expand into functionally defective phenotypes with poor recall/memory abilities to parasitic antigens. The exploitation of co-inhibitory pathways represent a highly viable area of translational research that has very well been utilized against certain cancerous conditions. Malaria, at times, evolve into a sustained chronic state where T cells express several co-inhibitory molecules (negative immune checkpoints) facilitating parasite escape and sub-optimal protective responses. Experimental evidence suggests that blockade of co-inhibitory molecules on T cells in malaria could result in the sustenance of protective responses together with dramatic parasite clearance. The role of several co-inhibitory molecules in malaria infection largely remain unclear, and here we discussed the potential applicability of co-inhibitory molecules in the management of malaria with a view to harness protective host responses against chronic disease and associated consequences.
    Matched MeSH terms: T-Lymphocytes/immunology*
  19. Pang T, Parasakthi N, Yap SF
    Med J Malaysia, 1979 Mar;33(3):243-6.
    PMID: 316496
    Matched MeSH terms: T-Lymphocytes*
  20. Pooi, Pooi Leong, Heng, Fong Seow
    MyJurnal
    Cancer immunotherapy is a form of treatment protocol for cancer patients that has been studied intensively over the last two decades. The undesirable side effects during the course of conventional treatment has lead to the development of immunotherapy as an alternative treatment modality. This approach encompasses the use of three different strategies with various immunotherapeutic modalities including (i) cytokines and monoclonal antibodies; (ii) activation of antigen presentation cells (APC) by using antigen-specific peptides or sources of antigens such as tumour lysate; and finally (iii) adoptive transfer of ex vivo activated autologous cytotoxic T-cells. Due to specific-targeting by antigen-specific monoclonal antibodies, dendritic cells and activated CD8+ T-cells, immunotherapy can eliminate tumour
    cells efficiently but the normal tissues are unaffected. Despite years of investigation, the outcome of immunotherapy-based clinical trials are inconsistent with very low response rates from patients. Several mechanisms have been proposed to contribute to this failure including the presence of regulatory T-cells (Treg), immunomodulatory cytokines, and aberrant gene expression in tumour cells. This review summarises information from about 140 articles and review papers. In addition, it also provides an update on recent trends in combinational immunotherapy with conventional therapy and encouraging results have been obtained. Reevaluation of previous studies is necessary to fine-tune the design and approach of immunotherapy to ensure better treatment outcomes.
    Matched MeSH terms: T-Lymphocytes, Cytotoxic; T-Lymphocytes, Regulatory
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links