Displaying all 6 publications

Abstract:
Sort:
  1. Sani MM, Ashari NSM, Abdullah B, Wong KK, Musa KI, Mohamud R, et al.
    Asian Pac J Allergy Immunol, 2019 Sep;37(3):138-146.
    PMID: 29981564 DOI: 10.12932/AP-191217-0220
    BACKGROUND: Terminally differentiated effector memory (TEMRA) T cells exert potent effector function after activation. The proportions of CD4+ T cell subsets especially memory cells in allergic rhinitis (AR) patients sensitized to house dust mites (HDMs) have not been extensively studied.

    OBJECTIVE: This study aimed to compare the mean percentages and absolute counts of CD4+ memory T cell subsets between: (i) non-allergic controls and AR patients; (ii) mild AR patients and moderate-severe AR patients.

    METHODS: Sensitization to Dermatophagoides farinae and Dermatophagoides pteronyssinus were determined in 33 non -allergic controls, 28 mild AR and 29 moderate-severe AR patients. Flow cytometry was used to determine the percentage of CD4+ na?ve (TN; CD45RA+CCR7+), central memory (TCM; CD45RA-CCR7+), effector memory (TEM; CD45RA-CCR7-) and TEMRA (CD45RA+CCR7-) T cells from the peripheral blood. The absolute counts of CD4+ T cell subsets were obtained by dual platform method from flow cytometer and hematology analyzer.

    RESULTS: There were no significant differences in the mean percentages and absolute counts of CD4+ T cell subsets between non-allergic controls and AR patients sensitized to HDMs. However, there were significant reduction in the mean percentage (p=0.0307) and absolute count (p=0.0309) of CD4+ TEMRA cells in moderate-severe AR patients compared to mild AR patients sensitized to HDMs and 13/24 (54.2%) moderate-severe AR patients sensitized to HDMs had persistent symptoms.

    CONCLUSION: Reduction in the mean percentage and absolute count of CD4+CD45RA+CCR7- TEMRA cells were observed in moderate-severe AR patients compared to mild AR patients in our population of AR patients sensitized to HDMs.

    Matched MeSH terms: T-Lymphocyte Subsets/metabolism
  2. Fadilah SA, Sahrir S, Raymond AA, Cheong SK, Aziz JA, Sivagengei K
    PMID: 10928365
    Activation of immunoregulatory T lymphocyte subsets has been observed in dengue viral infection, being more evident in dengue hemorrhagic fever (DHF) than in classical dengue fever (DF). There are, however, as yet no well-defined host markers to determine which patients with dengue viral infection will develop severe complications during the acute febrile stage of the disease. A study was performed to compare the cellular immune status in DHF, DF and non-dengue viral infections (NDF) in order to determine the value of these parameters in distinguishing DHF from classic DF and other viral infections during the acute febrile stage of the disease. This study involved 109 febrile patients admitted because of suspected DHF. Fifty patients were serologically confirmed cases of dengue infection, of which 25 had grade 1 or 2 DHF. There was a reduction in total T (CD3), CD4 and CD8 cells in DHF and demonstrated that a low level of CD3, CD4, CD8 and CD5 cells discriminated DHF from DF patients during the febrile stage of the illness. In contrast, B (CD19) cells and natural killer (NK) cells did not appear to be discriminatory in this study. Receiver operating characteristic (ROC) curve analysis showed that a combination of CD3 cell of < or = 45% and CD5 cell of < or = 55% was the best marker to identify DHF patients (sensitivity = 84% and specificity = 52% for CD3 cell of < or = 45%; sensitivity = 92% and specificity = 71% for CD5 cell of < or = 55%). CD4 cell of < or = 25% and CD8 cell < or = 30% were equally good in discriminating DHF from DF patients. On the other hand, the ROC curves indicated no clear difference between the immunoregulatory cell counts in DF from NDF Lymphopenia, atypical lymphocytosis and thrombocytopenia were significantly more evident in dengue compared to non-dengue infection but did not appear to be discriminatory among DHF and DF patients. The reduction in CD3, CD4, CD8, CD5 cells correlated with the degree of thrombocytopenia in DHF (p < 0.05) which suggests that these cells probably participate in a common pathogenetic mechanism.
    Matched MeSH terms: T-Lymphocyte Subsets/metabolism*
  3. Rajah T, Chow SC
    Toxicol Appl Pharmacol, 2014 Jul 15;278(2):100-6.
    PMID: 24768707 DOI: 10.1016/j.taap.2014.04.014
    The caspase inhibitor benzyloxycarbony (Cbz)-l-Val-Ala-Asp (OMe)-fluoromethylketone (z-VAD-FMK) has recently been shown to inhibit T cell proliferation without blocking caspase-8 and caspase-3 activation in primary T cells. We showed in this study that z-VAD-FMK treatment leads to a decrease in intracellular glutathione (GSH) with a concomitant increase in reactive oxygen species (ROS) levels in activated T cells. The inhibition of anti-CD3-mediated T cell proliferation induced by z-VAD-FMK was abolished by the presence of low molecular weight thiols such as GSH, N-acetylcysteine (NAC) and l-cysteine, whereas d-cysteine which cannot be metabolised to GSH has no effect. These results suggest that the depletion of intracellular GSH is the underlying cause of z-VAD-FMK-mediated inhibition of T cell activation and proliferation. The presence of exogenous GSH also attenuated the inhibition of anti-CD3-induced CD25 and CD69 expression mediated by z-VAD-FMK. However, none of the low molecular weight thiols were able to restore the caspase-inhibitory properties of z-VAD-FMK in activated T cells where caspase-8 and caspase-3 remain activated and processed into their respective subunits in the presence of the caspase inhibitor. This suggests that the inhibition of T cell proliferation can be uncoupled from the caspase-inhibitory properties of z-VAD-FMK. Taken together, the immunosuppressive effects in primary T cells mediated by z-VAD-FMK are due to oxidative stress via the depletion of GSH.
    Matched MeSH terms: T-Lymphocyte Subsets/metabolism*
  4. Liow KY, Chow SC
    Toxicol Appl Pharmacol, 2013 Nov 1;272(3):559-67.
    PMID: 23933532 DOI: 10.1016/j.taap.2013.07.022
    The cathepsin B inhibitor, benzyloxycarbonyl-phenylalanine-alanine-chloromethylketone (z-FA-CMK) was found to be toxic and readily induced cell death in the human T cell line, Jurkat, whereas two other analogs benzyloxycarbonyl-phenylalanine-alanine-fluoromethylketone (z-FA-FMK) and benzyloxycarbonyl-phenylalanine-alanine-diazomethylketone (z-FA-DMK) were not toxic. The toxicity of z-FA-CMK requires not only the CMK group, but also the presence of alanine in the P1 position and the benzyloxycarbonyl group at the N-terminal. Dose-response studies showed that lower concentrations of z-FA-CMK induced apoptosis in Jurkat T cells whereas higher concentrations induced necrosis. In z-FA-CMK-induced apoptosis, both initiator caspases (-8 and -9) and effector caspases (-3, -6 and -7) were processed to their respective subunits in Jurkat T cells. However, only the pro-form of the initiator caspases were reduced in z-FA-CMK-induced necrosis and no respective subunits were apparent. The caspase inihibitor benzyloxycarbonyl-valine-alanine-aspartic acid-(O-methyl)-fluoromehylketone (z-VAD-FMK) inhibits apoptosis and caspase processing in Jurkat T cells treated with low concentration of z-FA-CMK but has no effect on z-FA-CMK-induced necrosis and the loss of initiator caspases. This suggests that the loss of initiator caspases in Jurkat T cells during z-FA-CMK-induced necrosis is not a caspase-dependent process. Taken together, we have demonstrated that z-FA-CMK is toxic to Jurkat T cells and induces apoptosis at low concentrations, while at higher concentrations the cells die of necrosis.
    Matched MeSH terms: T-Lymphocyte Subsets/metabolism
  5. Petoumenos K, Choi JY, Hoy J, Kiertiburanakul S, Ng OT, Boyd M, et al.
    Antivir Ther, 2017;22(8):659-668.
    PMID: 28291735 DOI: 10.3851/IMP3155
    BACKGROUND: In the era of effective antiretroviral treatment (ART) CD4:CD8 ratio is proposed as a potential marker for HIV-positive (HIV+) patients at increased risk for non-AIDS comorbidities. The current study aims to compare CD4:CD8 ratio between Asian and Caucasian HIV+ patients.

    METHODS: HIV+ patients from the Australian HIV Observational Database (AHOD) and the TREAT Asia HIV Observational Database (TAHOD) meeting specific criteria were included. In these analyses Asian and Caucasian status were defined by cohort. Factors associated with a low CD4:CD8 ratio (cutoff <0.2) prior to ART commencement, and with achieving a normal CD4:CD8 ratio (>1) at 12 and 24 months post ART commencement were assessed using logistic regression.

    RESULTS: There were 591 patients from AHOD and 2,620 patients from TAHOD who met the inclusion criteria. TAHOD patients had a significantly (P<0.001) lower odds of having a baseline (prior to ART initiation) CD4:CD8 ratio greater than 0.2. After 12 months of ART, AHOD patients were more than twice as likely to achieve a normal CD4:CD8 ratio compared to TAHOD patients (15% versus 6%). However, after adjustment for confounding factors there was no significant difference between cohorts in the odds of achieving a CD4:CD8 ratio >1 (P=0.475).

    CONCLUSIONS: We found a significantly lower CD4:CD8 ratio prior to commencing ART in TAHOD compared to AHOD even after adjusting for confounders. However, after adjustment, there was no significant difference between the cohorts in odds of achieving normal ratio. Baseline CD4+ and CD8+ counts seem to be the main driver for this difference between these two populations.

    Matched MeSH terms: T-Lymphocyte Subsets/metabolism
  6. Munisvaradass R, Kumar S, Govindasamy C, Alnumair KS, Mok PL
    Int J Mol Sci, 2017 Sep 08;18(9).
    PMID: 28885562 DOI: 10.3390/ijms18091797
    Breast cancer is a common malignancy among women. The innate and adaptive immune responses failed to be activated owing to immune modulation in the tumour microenvironment. Decades of scientific study links the overexpression of human epidermal growth factor receptor 2 (ERBB2) antigen with aggressive tumours. The Chimeric Antigen Receptor (CAR) coding for specific tumour-associated antigens could initiate intrinsic T-cell signalling, inducing T-cell activation, and cytotoxic activity without the need for major histocompatibility complex recognition. This renders CAR as a potentially universal immunotherapeutic option. Herein, we aimed to establish CAR in CD3+ T-cells, isolated from human peripheral blood mononucleated cells that could subsequently target and induce apoptosis in the ERBB2 overexpressing human breast cancer cell line, SKBR3. Constructed CAR was inserted into a lentiviral plasmid containing a green fluorescent protein tag and produced as lentiviral particles that were used to transduce activated T-cells. Transduced CAR-T cells were then primed with SKBR3 cells to evaluate their functionality. Results showed increased apoptosis in SKBR3 cells co-cultured with CAR-T cells compared to the control (non-transduced T-cells). This study demonstrates that CAR introduction helps overcome the innate limitations of native T-cells leading to cancer cell apoptosis. We recommend future studies should focus on in vivo cytotoxicity of CAR-T cells against ERBB2 expressing tumours.
    Matched MeSH terms: T-Lymphocyte Subsets/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links