Displaying all 3 publications

Abstract:
Sort:
  1. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
    Matched MeSH terms: Synsepalum/chemistry*
  2. Fazilah NF, Hamidon NH, Ariff AB, Khayat ME, Wasoh H, Halim M
    Molecules, 2019 Apr 11;24(7).
    PMID: 30978923 DOI: 10.3390/molecules24071422
    There has been an explosion of probiotic incorporated based product. However, many reports indicated that most of the probiotics have failed to survive in high quantity, which has limited their effectiveness in most functional foods. Thus, to overcome this problem, microencapsulation is considered to be a promising process. In this study, Lactococcus lactis Gh1 was encapsulated via spray-drying with gum Arabic together with Synsepalum dulcificum or commonly known as miracle fruit. It was observed that after spray-drying, high viability (~10⁸ CFU/mL) powders containing L. lactis in combination with S. dulcificum were developed, which was then formulated into yogurt. The tolerance of encapsulated bacterial cells in simulated gastric juice at pH 1.5 was tested in an in-vitro model and the result showed that after 2 h, cell viability remained high at 1.11 × 10⁶ CFU/mL. Incubation of encapsulated cells in the presence of 0.6% (w/v) bile salts showed it was able to survive (~10⁴ CFU/mL) after 2 h. Microencapsulated L. lactis retained a higher viability, at ~10⁷ CFU/mL, when incorporated into yogurt compared to non-microencapsulated cells ~10⁵ CFU/mL. The fortification of microencapsulated and non-microencapsulated L. lactis in yogurts influenced the viable cell counts of yogurt starter cultures, Lactobacillus delbrueckii subs. bulgaricus and Streptococcus thermophilus.
    Matched MeSH terms: Synsepalum/chemistry*
  3. Swamy KB, Hadi SA, Sekaran M, Pichika MR
    J Med Food, 2014 Nov;17(11):1165-9.
    PMID: 25314134 DOI: 10.1089/jmf.2013.3084
    Synsepalum dulcificum or the "miracle fruit" is well known for its taste-modifying ability. The aim of this review was to assess the published medically beneficial as well as potential characteristics of this fruit. A search in three databases, including PubMed, ScienceDirect, and Google Scholar, was made with appropriate keywords. The resulting articles were screened in different stages based on the title, abstract, and content. A total of nine articles were included in this review. This review summarized the findings of previously published studies on the effects of miracle fruit. The main studied characteristic of the fruit was its effect on the taste receptors, resulting in the sweet sensation when substances with acidic content were ingested. This effect was shown to be related to a glycoprotein called "miraculin." Other beneficial characteristics of this fruit were its antioxidant and anticancer abilities that are due to the various amides existing in the miracle fruit. Apart from the above, the other observed effect of this fruit was its antidiabetic effect that was tested in rats. Further studies should be conducted to establish the findings. The miracle fruit can be a healthy additive due to its unique characteristics, including sour taste sensation modification as well as its antioxidant and antidiabetic effects.
    Matched MeSH terms: Synsepalum/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links