Displaying all 8 publications

Abstract:
Sort:
  1. Ho CL
    Front Plant Sci, 2015;6:1057.
    PMID: 26635861 DOI: 10.3389/fpls.2015.01057
    Many algae are rich sources of sulfated polysaccharides with biological activities. The physicochemical/rheological properties and biological activities of sulfated polysaccharides are affected by the pattern and number of sulfate moieties. Sulfation of carbohydrates is catalyzed by carbohydrate sulfotransferases (CHSTs) while modification of sulfate moieties on sulfated polysaccharides was presumably catalyzed by sulfatases including formylglycine-dependent sulfatases (FGly-SULFs). Post-translationally modification of Cys to FGly in FGly-SULFs by sulfatase modifiying factors (SUMFs) is necessary for the activity of this enzyme. The aims of this study are to mine for sequences encoding algal CHSTs, FGly-SULFs and putative SUMFs from the fully sequenced algal genomes and to infer their phylogenetic relationships to their well characterized counterparts from other organisms. Algal sequences encoding CHSTs, FGly-SULFs, SUMFs, and SUMF-like proteins were successfully identified from green and brown algae. However, red algal FGly-SULFs and SUMFs were not identified. In addition, a group of SUMF-like sequences with different gene structure and possibly different functions were identified for green, brown and red algae. The phylogeny of these putative genes contributes to the corpus of knowledge of an unexplored area. The analyses of these putative genes contribute toward future production of existing and new sulfated carbohydrate polymers through enzymatic synthesis and metabolic engineering.
    Matched MeSH terms: Sulfatases
  2. Shukor MY, Husin WS, Rahman MF, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):129-34.
    PMID: 20112874
    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively.
    Matched MeSH terms: Sulfatases/metabolism
  3. Hwa IA, Reimann K, Lim PK, Lai LC
    Int J Mol Med, 1999 Aug;4(2):175-8.
    PMID: 10402485
    Oestrogens play an important role in the development of breast cancer. A very important source of active oestrogens in the breast is oestrone sulphate which is converted to oestrone by oestrone sulphatase. The aim of this study was to assess the effects of IGF-I and IGF-II on oestrone sulphatase activity in, as well as cell growth of, MCF-7 and MDA-MB-231 human breast cancer cell lines. Cells were grown in supplemented DMEM and treated with varying concentrations of IGFs. At the end of the treatment period, intact cell monolayers were washed and assayed for oestrone sulphatase activity and the number of cell nuclei determined on a Coulter Counter. Oestrone sulphatase activity was significantly stimulated by IGF-I and II at concentrations of 100 ng/ml and 200 ng/ml in MCF-7 cells. IGF-I had no effect on oestrone sulphatase activity in MDA-MB-231 cells over the range of concentrations tested. Significant inhibition of oestrone sulphatase was observed in MDA-MB-231 cells at higher concentrations of IGF-II (50 ng/ml, 100 ng/ml and 200 ng/ml). Both IGF-I and IGF-II at higher concentrations (100 ng/ml and 200 ng/ml) significantly inhibited MCF-7 and stimulated MDA-MB-231 cell growth. Since IGF-I and II have effects on cell growth and oestrone sulphatase activity in breast cancer cell lines they may play a role in the development and progression of human breast cancer.
    Matched MeSH terms: Sulfatases/drug effects*; Sulfatases/metabolism
  4. Elsadig RE, Reimann K, Yip CH, Lai LC
    Anticancer Res, 2001 Jul-Aug;21(4A):2693-6.
    PMID: 11724341
    Oestrone sulphate is a major source of active oestrogens in the breast. It is converted to oestrone by oestrone sulphatase. Breast cyst fluid (BCF) is a rich source of sex hormones and growth factors. BCF obtained from British women has been shown to inhibit oestrone sulphatase activity in the MCF-7 oestrogen-receptor-positive breast cancer cell line. The aim of the present study was to assess whether BCF obtained from Malaysian women inhibited oestrone sulphatase activity in the MCF-7 and MDA-MB-231 breast cancer cell lines. The cell lines were grown in supplemented Dulbecco's Modified Eagle Medium for 3 days, following which a 3-day incubation with sterilised BCF was carried out. At the end of the treatment period the cell monolayers were assayed for oestrone sulphatase activity and the number of cell nuclei counted on a Coulter Counter. BCF was also fractionated on a Bio-Sil SEC 125-5 column by HPLC and the effects of the fractions collected on oestrone sulphatase activity in the MDA-MB-231 cell line were assessed. All 18 samples of BCF tested inhibited cell growth in the MDA-MB-231 cell line while 8 out of 10 samples inhibited MCF-7 cell growth; 15 out of 18 BCF samples inhibited oestrone sulphatase activity in the MDA-MB-231 cell line whereas 5 out of 10 samples stimulated oestrone sulphatase activity in the MCF-7 cell line. HPLC fractions corresponding to molecular weights of > 158 kDa and 28 kDa were found to inhibit oestrone sulphatase activity in the MDA-MB-231 cell line. Further work is required to fully characterise these substances as they may have roles to play in the prevention of breast cancer.
    Matched MeSH terms: Sulfatases/antagonists & inhibitors*
  5. Ng JH, Nesaretnam K, Reimann K, Lai LC
    Int J Cancer, 2000 Oct 1;88(1):135-8.
    PMID: 10962451
    Oestrogen is important in the development of breast cancer. Oestrogen receptor positive breast cancers are associated with a better prognosis than oestrogen-receptor negative breast cancers since they are more responsive to hormonal treatment. Oestrone sulphate acts as a huge reservoir for oestrogens in the breast. It is converted to the potent oestrogen, oestradiol (E(2)) by the enzymes oestrone sulphatase and oestradiol-17beta hydroxysteroid dehydrogenase (E(2)DH). Retinoic acid and carotenoids have been shown to have chemopreventive activity against some cancers. The aim of our study was to determine and compare the effects of retinoic acid and palm oil carotenoids on growth of and oestrone sulphatase and E(2)DH activities in the oestrogen receptor positive, MCF-7 and oestrogen receptor negative, MDA-MB-231 breast cancer cell lines. Retinoic acid and carotenoids inhibited MCF-7 cell growth but had no effect on MDA-MB-231 cell growth. Both retinoic acid and carotenoids stimulated oestrone sulphatase activity in the MCF-7 cell line. E(1) to E(2) conversion was inhibited by 10(-7) M carotenoids but was stimulated at 10(-6) M in the MCF-7 cell line. Retinoic acid had no effect on E(1) to E(2) conversion at 10(-7) M but stimulated E(1) to E(2) conversion at 10(-6) M. Retinoic acid and carotenoids had no effect on E(2) to E(1) conversion in the MCF-7 cell line. Retinoic acid stimulated E(1) to E(2) conversion in the MDA-MB-231 cell line but had no effect on oestrone sulphatase activity or E(2) to E(1) conversion in this cell line. Both oestrone sulphatase and E(2)DH activity were not affected by carotenoids in the MDA-MB-231 cell line. In conclusion, retinoic acid and carotenoids may prevent the development of hormone-dependent breast cancers since they inhibit the growth of the MCF-7 cell line.
    Matched MeSH terms: Sulfatases/metabolism*
  6. Ee YS, Lai LC, Reimann K, Lim PK
    Oncol Rep, 1999 6 22;6(4):843-6.
    PMID: 10373668
    Transforming growth factor-beta (TGF-beta) has been shown to inhibit the growth of mammary epithelial cells and may play a protective role in mammary carcinogenesis. In contrast, oestrogens promote the development of breast cancer. Oestrone sulphate (E1S) is a huge reservoir of active oestrogens in the breast being converted to the weak oestrogen, oestrone (E1), by oestrone sulphatase. E1 is reversibly converted by oestradiol-17beta hydroxysteroid dehydrogenase to the potent oestrogen, oestradiol (E2). The aim of this study was to assess the effect of the TGF-beta1 isoform on growth and oestrogen metabolism in the hormone-dependent MCF-7 and hormone-independent MDA-MB-231 human breast cancer cell lines. The results showed that TGF-beta1 significantly inhibited cell growth and stimulated the conversion of E1S to E1 and E1 to E2 in the MCF-7 cell line. In the MDA-MB-231 cell line TGF-beta1 significantly stimulated cell growth and inhibited the interconversions between E1 and E2. In conclusion, the growth inhibitory effect of TGF-beta1 on the MCF-7 cell line would appear to confer a protective effect in breast cancer. However, its ability to increase the amount of E2 would increase the risk of breast cancer. Which of these effects predominates in vivo remains to be explored. The growth stimulatory effect of TGF-beta1 on the MDA-MB-231 cell line probably acts through a mechanism independent of the effect of TGF-beta1 on oestrogen concentrations since this cell line is hormone unresponsive.
    Matched MeSH terms: Sulfatases/metabolism
  7. Wiesmann UN, DiDonato S, Herschkowitz NN
    Biochem Biophys Res Commun, 1975 Oct 27;66(4):1338-43.
    PMID: 4
    Matched MeSH terms: Sulfatases/metabolism*
  8. Wong SF, Reimann K, Lai LC
    Pathology, 2001 Nov;33(4):454-9.
    PMID: 11827412
    Oestrogens play an important role in the development of breast cancer. Oestrone sulphate (E1S) acts as a huge reservoir of oestrogens in the breast and is converted to oestrone (E1) by oestrone sulphatase (E1STS). E1 is then reversibly converted to the potent oestrogen, oestradiol (E2) by oestradiol-17beta hydroxysteroid dehydrogenase (E2DH). The aim of this study was to assess the effects of transforming growth factor-beta1 (TGFbeta1), insulin-like growth factor-I (IGF-I) and insulin-like growth factor-II (IGF-II) on cell growth, E1STS and E2DH activities in the MCF-7 and MDA-MB-231 human breast cancer cell lines. TGFbeta1, IGF-I and IGF-II alone or in combination inhibited cell growth of both cell lines but no additive or synergistic effects were observed. The treatments significantly stimulated E1STS activity in the MCF-7 cell line, except for TGFbeta1 alone and TGFbeta1 and IGF-I in combination, where no effects were seen. Only TGFbeta1 and IGF-II acted synergistically to stimulate E1STS activity in the MCF-7 cells. There was no significant effect on E1STS activity in the MDA-MB-231 cells with any of the treatments. In the MCF-7 cells, TGFbeta1 and IGF-I, IGF-I and IGF-II, and TGFbeta1, IGF-I and IGF-II acted synergistically to stimulate the reductive E2DH activity, while only TGFbeta1, IGF-I and IGF-II synergistically stimulated the oxidative E2DH activity. There were no additive or synergistic effects on both oxidative and reductive E2DH activities in the MDA-MB-231 cells. In conclusion, TGFbeta1, IGF-I and IGF-II may have effects on oestrogen metabolism, especially in the MCF-7 cell line where they stimulated the conversion of E1S to E1 and E1 to E2 and, thus, may have roles to play in the development of breast cancer.
    Matched MeSH terms: Sulfatases/metabolism
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links