Displaying all 5 publications

Abstract:
Sort:
  1. Choi SB, Normi YM, Wahab HA
    Protein J, 2009 Dec;28(9-10):415-27.
    PMID: 19859792 DOI: 10.1007/s10930-009-9209-9
    Twenty percent of genes that encode for hypothetical proteins from Klebsiella pneumoniae MGH78578 were identified, leading to KPN00728 and KPN00729 after bioinformatics analysis. Both open reading frames showed high sequence homology to Succinate dehydrogenase Chain C (SdhC) and D (SdhD) from Escherichia coli. Recently, KPN00729 was assigned as SdhD. KPN00728 thus remains of particular interest as no annotated genes from the complete genome sequence encode for SdhC. We discovered KPN00728 has a missing region with conserved residues important for ubiquinone (UQ) and heme group binding. Structure and function prediction of KPN00728 coupled with secondary structure analysis and transmembrane topology showed KPN00728 adopts SDH-(subunit C)-like structure. To further probe its functionality, UQ was docked on the built model (consisting KPN00728 and KPN00729) and formation of hydrogen bonds between UQ and Ser27, Arg31 (KPN00728) and Tyr84 (KPN00729) further reinforces and supports that KPN00728 is indeed SDH. This is the first report on the structural and function prediction of KPN00728 of K. pneumoniae MGH78578 as SdhC.
    Matched MeSH terms: Succinate Dehydrogenase/genetics; Succinate Dehydrogenase/metabolism*; Succinate Dehydrogenase/chemistry*
  2. Choi SB, Normi YM, Wahab HA
    BMC Bioinformatics, 2011;12 Suppl 13:S11.
    PMID: 22372825 DOI: 10.1186/1471-2105-12-S13-S11
    Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided.
    Matched MeSH terms: Succinate Dehydrogenase/metabolism*; Succinate Dehydrogenase/chemistry
  3. Hazem Yousef Abu Sharbeh, Kannan, Thirumulu Ponnuraj, Raja Azman Raja Awang, Adam Husein
    MyJurnal
    The in vitro cytotoxic potential of locally produced dental porcelain was evaluated in this study. The cellular response of human osteoblast and fibroblast cell lines were assessed using MTT assay by incubating with the fluid extract of dental porcelain powder and dental porcelain discs (direct test). Aging process was carried out by submerging the discs into 3% bovine serum albumin (BSA) solution. Tests on extracts showed that dental porcelain was significantly different from the control at a concentration of 250 mg/ml. Direct test showed that dental porcelain after aging was not significantly different from the control with a mean (SD) of 89.2 (13.4)%, whereas, it was significantly different from the control before conditioning of BSA with a mean (SD) of 88.5 (12.1)%. However, the dental porcelain caused mild suppression of succinate dehydrogenase activity (
    Matched MeSH terms: Succinate Dehydrogenase
  4. Visweswara Rao P, Madhavi K, Dhananjaya Naidu M, Gan SH
    PMID: 23662138 DOI: 10.1155/2013/486047
    The present study was conducted to evaluate the therapeutic efficacy of Rhinacanthus nasutus (R. nasutus) on mitochondrial and cytosolic enzymes in streptozotocin-induced diabetic rats. The rats were divided into five groups with 6 rats in each group. The methanolic extract of R. nasutus was orally administered at a dose of 200 mg/kg/day, and glibenclamide was administered at a dose of 50 mg/kg/day. All animals were treated for 30 days and were sacrificed. The activities of both intra- and extramitochondrial enzymes including glucose-6-phosphate dehydrogenase (G6PDH), succinate dehydrogenase (SDH), glutamate dehydrogenase (GDH), and lactate dehydrogenase (LDH) were measured in the livers of the animals. The levels of G6PDH, SDH, and GDH were significantly reduced in the diabetic rats but were significantly increased after 30 days of R. nasutus treatment. The increased LDH level in diabetic rats exhibited a significant reduction after treatment with R. nasutus. These results indicate that the administration of R. nasutus altered the activities of oxidative enzymes in a positive manner, indicating that R. nasutus improves mitochondrial energy production. Our data suggest that R. nasutus should be further explored for its role in the treatment of diabetes mellitus.
    Matched MeSH terms: Succinate Dehydrogenase
  5. Jusman SWA, Azzizah IN, Sadikin M, Hardiany NS
    Malays J Med Sci, 2021 Apr;28(2):39-47.
    PMID: 33958959 DOI: 10.21315/mjms2021.28.2.4
    Background: A keloid is a benign skin tumour characterised by excessive proliferation of fibroblasts, a process that requires a sufficient amount of energy. The energy needs are associated with adequate oxygen (O2) flow and well-functioning mitochondria. It is known that cytoglobin (CYGB) has a function in O2 distribution. The aim of the present study was to explore whether the inhibition of CYGB expression caused impaired mitochondrial function of keloid fibroblasts.

    Methods: An in vitro study was conducted on a keloid fibroblast derived from our previous study. The study was carried out in the laboratory of the Biochemistry & Molecular Biology Department, Faculty of Medicine, Universitas Indonesia (FMUI), from July to December 2018. CYGB expression was inhibited by small interfering ribonucleic acid (siRNA) and CYGB. Analysis of mitochondrial function was observed through peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), a mitochondrial biogenesis marker and the activity of the succinate dehydrogenase (SDH) enzyme in mitochondria.

    Results: The CYGB gene and protein were downregulated after treatment with CYGB siRNA. Inhibition of CYGB expression with siRNA also tended to decrease the levels of PGC-1α messenger ribonucleic acid (mRNA) and protein, as well as SDH enzyme activity.

    Conclusion: Inhibition of CYGB expression with siRNA tended to decrease mitochondrial biogenesis and function. This may be useful for understanding the excessive proliferation of fibroblasts in keloids and for development of treatment for keloids.

    Matched MeSH terms: Succinate Dehydrogenase
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links