Streptococcus gordonii and Streptococcus sanguinis are pioneer colonizers of dental plaque and important agents of bacterial infective endocarditis (IE). To gain a greater understanding of these two closely related species, we performed comparative analyses on 14 new S. gordonii and 5 S. sanguinis strains using various bioinformatics approaches. We revealed S. gordonii and S. sanguinis harbor open pan-genomes and share generally high sequence homology and number of core genes including virulence genes. However, we observed subtle differences in genomic islands and prophages between the species. Comparative pathogenomics analysis identified S. sanguinis strains have genes encoding IgA proteases, mitogenic factor deoxyribonucleases, nickel/cobalt uptake and cobalamin biosynthesis. On the contrary, genomic islands of S. gordonii strains contain additional copies of comCDE quorum-sensing system components involved in genetic competence. Two distinct polysaccharide locus architectures were identified, one of which was exclusively present in S. gordonii strains. The first evidence of genes encoding the CylA and CylB system by the α-haemolytic S. gordonii is presented. This study provides new insights into the genetic distinctions between S. gordonii and S. sanguinis, which yields understanding of tooth surfaces colonization and contributions to dental plaque formation, as well as their potential roles in the pathogenesis of IE.
Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
Cell-cell interactions between genetically distinct bacteria, known as coaggregation, are important for the formation of mixed-species biofilms such as dental plaque. Interactions lead to gene regulation in the partner organisms that may be critical for adaptation and survival in mixed-species biofilms. Here, gene regulation responses to coaggregation between Streptococcus gordonii and Fusobacterium nucleatum were studied using dual RNA-Seq. Initially, S. gordonii was shown to coaggregate strongly with F. nucleatum in buffer or human saliva. Using confocal laser scanning microscopy and transmission electron microscopy, cells of different species were shown to be evenly distributed throughout the coaggregate and were closely associated with one another. This distribution was confirmed by serial block face sectioning scanning electron microscopy, which provided high resolution three-dimensional images of coaggregates. Cell-cell sensing responses were analysed 30 minutes after inducing coaggregation in human saliva. By comparison with monocultures, 16 genes were regulated following coaggregation in F. nucleatum whereas 119 genes were regulated in S. gordonii. In both species, genes involved in amino acid and carbohydrate metabolism were strongly affected by coaggregation. In particular, one 8-gene operon in F. nucleatum encoding sialic acid uptake and catabolism was up-regulated 2- to 5-fold following coaggregation. In S. gordonii, a gene cluster encoding functions for phosphotransferase system-mediated uptake of lactose and galactose was down-regulated up to 3-fold in response to coaggregation. The genes identified in this study may play key roles in the development of mixed-species communities and represent potential targets for approaches to control dental plaque accumulation.
We present an interesting case of late-onset intracranial bleeding (ICB) as a complication of Streptococcus gordonii causing infective endocarditis. A previously healthy young woman was diagnosed with infective endocarditis. While she was already on treatment for 2 weeks, she had developed seizures with a localising neurological sign. An urgent non-contrasted CT brain showed massive left frontoparietal intraparenchymal bleeding. Although CT angiogram showed no evidence of active bleeding or contrast blush, massive ICB secondary to vascular complication of infective endocarditis was very likely. An urgent decompressive craniectomy with clot evacuation was done immediately to release the mass effect. She completed total 6 weeks of antibiotics and had postoperative uneventful hospital stay despite having a permanent global aphasia as a sequel of the ICB.
The gram-positive, mesophilic and non-motile coccus Streptococcus gordonii is an important causative agent of infective endocarditis (IE). This pioneer species of dental plaque also causes bacteraemia in immune-supressed patients. In this study, we analysed the genome of a representative strain, Streptococcus gordonii SK12 that was originally isolated from the oral cavity. To gain a better understanding of the biology, virulence and phylogeny, of this potentially pathogenic organism, high-throughput Illumina HiSeq technology and different bioinformatics approaches were performed. Genome assembly of SK12 was performed using CLC Genomic Workbench 5.1.5 while RAST annotation revealed the key genomic features. The assembled draft genome of Streptococcus gordonii SK12 consists of 27 contigs, with a genome size of 2,145,851 bp and a G+C content of 40.63%. Phylogenetic inferences have confirmed that SK12 is closely related to the widely studied strain Streptococcus gordonii Challis. Interestingly, we predicted 118 potential virulence genes in SK12 genome which may contribute to bacterial pathogenicity in infective endocarditis. We also discovered an intact prophage which might be recently integrated into the SK12 genome. Examination of genes present in genomic islands revealed that this oral strain
might has potential to acquire new phenotypes/traits including strong defence system, bacitracin
resistance and collateral detergent sensitivity. This detailed analysis of S. gordonii SK12 further improves our understanding of the genetic make-up of S. gordonii as a whole and may help to elucidate how this species is able to transition between living as an oral commensal and potentially causing the lifethreatening condition infective endocarditis.